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Abstract 

 

The use of small satellites has increased significantly in recent years, and a growing community is partici-

pating in designing and building space instruments. To achieve lower costs and faster delivery times, and to al-

low innovative solutions from people with multidisciplinary backgrounds, easy and straightforward develop-

ment processes and tools are needed. The possibility of having people involved from different areas of expertise 

than solely space engineering could bring out innovation and approaches that would not otherwise be possible. 

This paper presents a process for developing low-cost, fast-delivery satellite subsystems using commercial 

off- the- shelf (COTS) components and investigates the suitability of a readily available open source hobby de-

velopment board (Arduino) in the prototyping phase of this process. The process allows participation of external 

groups to the project with a low threshold. The external group can be a group of experts from different fields, or 

even a group of students or hobbyists. This practice can facilitate innovation, and lower risks from design un-

certainties in the beginning of development. Open source hobby prototyping tools with COTS components have 

several potential benefits for developing small satellite subsystems: low component and platform prices and 

shorter development times, achieved by using a platform that takes care of most low-level issues, saves time in 

the beginning of the prototyping process, and allows earlier subsystem and satellite level verification.  

The current study involved the implementation of sun sensor subsystems for Aalto University's nanosatel-

lites using the tools and processes presented herein, and investigated whether the prototyping process and plat-

form is suitable for the task. An included use case goes through the sun sensor subsystem development process, 

along with specifications needed to build one. The process was successful, and the final subsystem requires an 

external envelope of only 6 mm * 6 mm * 1 mm for integrating its sensor part, allowing easy integration to solar 

panels and being one of the smallest and cheapest satellite sun sensors available. 
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1. Introduction 

 

The use of small satellites has increased signifi-

cantly in the past years, especially nanosatellites 

weighing only 1–10 kilograms (Swartwout, 2013). 

The lower cost compared to conventional satellites 

allows universities, small start-up companies and 

non-space-faring nations to develop experimental 

spacecraft and subsystems (Woellert, 2010). Also, the 

traditional space industry has moved towards a faster, 

better, cheaper (FBC) approach (Paxton, 2007).  

The central idea of building nanosatellites is gen-

erally to achieve faster delivery and lower costs com-

pared to conventional satellites, typically at the ex-

pense of reliability and performance. To keep costs 

low, using commercial of the shelf (COTS) compo-

nents and subsystems is very typical (Dubos, 2010). 

Many mass-production and open-market electronic 

components and integrated circuits (IC) may be uti-

lized in small satellite systems, even if they are de-

signed for terrestrial use. They often offer sufficient 

performance for a nanosatellite with a much more 

affordable price than space-grade equivalents. How-

ever, dedicated methods and processes are required 

for validating their durability and performance early 

within a satellite project, since their suitability to ful-

fill mission requirements is often unclear. 

Many nanosatellite subsystems can be procured 

from the market and integrated to the satellite with 

ease, if for example CubeSat Kit specifications are 

followed. The availability of such subsystems has 

further decreased development times of small satel-

lite projects, allowing further overall project cost and 

time reductions. However, some subsystems required 

for a specific satellite mission may not be available 

off-the-shelf, or do not offer the best possible com-

patibility with the rest of the satellite design. Thus, 

they have to be developed concurrently within a fast-

paced nanosatellite project. 

This paper examines the suitability of using an 

open-source hobby prototyping platform (Arduino) in 

a new refined development process of building 

nanosatellite subsystems by using COTS compo-

nents, while presenting Aalto University's nano-

satellite project as a case example. Using such a plat-

form in the early phase of the development would 

potentially allow validating component selections and 

provide valuable input to satellite level design. Also, 

since a large number of nanosatellite projects have 

educational objectives, a simple, easily available and 

open-source prototyping platform would potentially 

make the development project more approachable for 

a wider group of people and lead to interdisciplinary 

innovations.  

A development project of a miniature digital sun 

sensor subsystem is presented as an example, but the 

same practices can also be used in the development 

of other small satellite subsystems built with COTS 

components. The sun sensor subsystem was devel-

oped for the needs of the electro-static plasma 

brake/sail experiment onboard the Aalto-1 nano-

satellite (Khurshid, 2014) and as the main absolute 

attitude sensor in the Aalto-2 nanosatellite, taking 

part in the international QB50 atmospheric science 

mission (Gill, 2013). 

This paper is divided into eight sections: The sec-

ond section presents related work and background on 

the subject. The third section presents a development 

process for small satellite subsystem development 

using COTS components. The fourth turns to discus-

sion of the potential benefits of using hobby devel-

opment platforms, and the fifth section presents a use 

case of sun sensor subsystem prototyping. The sixth 

section presents the steps taken after the prototyping 

phase for the final space-instrument development, 

and the seventh presents results and discussion, with 

concluding remarks in section eight. 

 

2. Small Satellite Design Methodology 

 

To permit timely and reliable subsystem devel-

opment concurrently within a fast-paced small satel-

lite project, new development and quality processes 

should be investigated. Unfortunately, traditional 

space industry standards cannot be followed directly, 

and there is little public information available about 

actual practices used in small satellite subsystem de-

velopment and testing. Still, even in the case of 

nanosatellites, considerable but low-cost efforts 

should be taken to validate systems under develop-

ment. In many nanosatellite projects, inadequate de-

velopment practices have caused too little time and 
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effort for thorough software development and inter-

face testing, which may lead to project delays, in-

creased costs, and high infant mortality rates (Swart-

wout, 2013). Fortunately, it is expected that a proper-

ly tailored combination of traditional parts assurance 

techniques and assembly level screening with qualifi-

cation testing can also produce a reliable design for 

nanosatellites (Rose, 2012). 

Small satellite projects are usually very dynamic 

by nature, and requirements may change late in the 

project due to many ambiguities caused by the con-

current design approach. To control the associated 

risks, agile system engineering practices generally 

used in software projects have been proposed to be 

used in nanosatellite projects (Huang, 2012). Moreo-

ver, new verification strategies have been developed 

(Eickhoff, 2007) (Hendrics, 2005), allowing concur-

rent development and earlier satellite level verifica-

tion. In these strategies, simulation and development 

models are used to allow starting software develop-

ment as soon as possible, and verifying interfaces  

between different subsystems before the final hard-

ware is available. To obtain realistic analysis results 

from such simulation environments, subsystem char-

acteristics should be validated and included in the 

simulations. 

As many small satellites are used either for edu-

cational or technology demonstration purposes 

(Swartwout, 2013) and the project teams consist of a 

small internal group of space technology profession-

als, the importance of allowing the use of new inno-

vative technologies and external experts should be 

emphasized. The typical organizational structure of 

nanosatellite projects at Aalto University is depicted 

in Figure 1 as an example. In a small satellite organi-

zation, the internal group is formed of space technol-

ogy professionals responsible for project planning, 

specifications, management, and final implementa-

tion, while external groups are interdisciplinary con-

tributors participating only on a defined part of the 

project. 

Measuring increased innovation potential is not 

unequivocal, as are component cost and development 

time. Nonetheless, innovation research supports the 

idea of accelerating innovation by using a greater 

number of internal and external sources for ideas. Ef-

fective use of both internal and external paths leads to 

better results than relying solely to internal experts 

(Chesbrough, 2006). One of the main parts is to inte-

grate internal and external knowledge with a combi-

nation of more complex knowledge (Chesbrough, 

2006). Modular small satellite projects provide a 

 

Figure 1. Small satellite project organizational structure. 
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good setting for this kind of approach, as long as 

there is a straightforward process in which different 

groups can participate. Providing an approachable 

process and development platform to build satellite 

subsystems enables others, in addition to space tech-

nology professionals, to contribute in a way that is 

directly adaptable to the actual project. 

 

3. Small Satellite Subsystem Development Process 

 

An agile process for developing small satellite 

subsystems using COTS components and external 

groups is presented in this section. The process is re-

fined from the traditional space system development 

process flow depicted, e.g., in the ECSS-M-ST-10C 

(European Cooperation for Space Standardization, 

2009), but takes into consideration the need for agile 

development and early validation of subsystem de-

signs. The main differences to the standard process 

include an iterative requirement specification ap-

proach, further emphasis on testing already at a pro-

totyping phase, and a straightforward interface for 

including external developer groups. The develop-

ment process used in Aalto University's nanosatellite 

projects is presented in Figure 2, showing inputs to 

the concurrent satellite level design process. 

The development starts by setting out require-

ments on the satellite level, which fulfill the mission 

statement and intended functions. Satellite-level re-

quirements form the baseline for development, and 

are further complemented with lower level require-

ments, typically for each subsystem or development 

 

Figure 2. COTS subsystem development flow with iterative requirement specification, input to satellite level design and an option of including 

external groups. 
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branch. A single developer can be contributing to 

several development branches, and aspects of a single 

subsystem may be part of several development 

branches.  

While satellite level requirements are given as an 

input, exact subsystem requirements and design val-

ues are iterated on-the-fly, during prototype devel-

opment and testing in meetings between affected in-

ternal and external groups. These updates can be add-

ed to requirement compliance matrices, automated 

design budgets, and satellite level analyses. One 

should note that the subsystem level requirements can 

be decreased only if the satellite-level system can 

compensate for it. Typical key requirement types and 

sources from which they can typically be determined, 

even in the very early part of the project, are present-

ed in Table 1 as an example. 

 

Since very strict requirement specification limits 

the possible outcomes of the prototyping process, a 

certain degree of freedom should be allowed. Very 

strict requirements assure the applicability in the 

main project, but also diminish the possibility for in-

novative and unconventional solutions. One should 

take into account that making specifications that can-

not be fulfilled by using any commercially available 

options is a possibility. Hence, the specifications 

need to be open for modifications according to COTS 

suitability and availability. As soon as the component 

candidates have been selected, preliminary character-

istics from datasheets can be included in the satellite-

level design tools, e.g., simulators and budgets, to 

investigate their suitability for the mission.  

Each development branch goes through the proto-

typing phase and final phase independently. The pro-

totyping phase is used to identify applicable COTS 

technologies, test them, and confirm that the subsys-

tem-level requirements are applicable with available 

COTS components. External groups may be used in 

this phase for COTS selection, prototype design, and 

to some extent for prototype verification, as shown in 

Figure 2. Proceeding to the final phase in a develop-

ment branch means freezing down the subsystem re-

quirements and building a flight equivalent system. 

The verification of the subsystem is divided into 

prototype and final verification for early assessment 

of the selected COTS components in relation to the 

specified requirements. Once the prototype version is 

ready, already in the very early part of the develop-

ment, a testing campaign is conducted. The testing 

may follow traditional commercial electrical, elec-

tronic, and electromechanical (EEE) component tests, 

depicted, e.g., in ECSS-Q-ST-60-13C (European Co-

operation for Space Standardization, 2013), tailored 

to meet the required level of reliability. One should 

note that the durability and performance of the pro-

cured components may differ from components test-

ed by the manufacturer as they are usually not from 

the same manufacturing batch and may have been 

modified. Especially if environmental durability re-

quirements exceed the tests done by the manufactur-

er, the components should be tested with appropriate 

levels already in the prototyping phase. These tests 

usually include further thermal tests and radiation 

testing. Also, subsystem interfaces should be tested 

with functional tests on other subsystems or subsys-

tem simulators. 

 

4. Using Open-source Hobby Development Plat-

forms 

 

A readily available development platform for the 

prototyping phase, taking care of most low-level is-

sues, such as connecting input and outputs along with 

an integrated development environment (IDE), would 

allow a wide range of developers to be involved in 

the subsystem design project.  Arduino Uno is cur-

rently the most popular open-source hobby develop-

ment board, including a microcontroller, a boot-

Table 1. Key Requirements and Sources from Which they are Defined 

Requirement/ 

Subsystem level 
Source / Satellite level 

Mass Mass budget 

Power Power budget 

Dimensions CAD model 

Interface System diagram 

Performance Mission simulation / analysis 

Environmental 

durability 

Standard / analysis 
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loader, high level C++ libraries and an integrated de-

velopment environment (IDE) (Arduino Uno, 2014). 

It has a well-established user base and wide support 

from both online communities and component sup-

pliers. David Cuartielles, the co-founder of Arduino, 

stated in 2013 that there were over 700,000 registered 

official Arduino boards. In addition, he estimated that 

there is at least one clone board per every official Ar-

duino (Medea, 2013). 

While members of external groups can be experts 

in their own area, it is possible that they are not em-

bedded system professionals. Advantages of a 

straightforward prototyping processes are highlighted 

with interdisciplinary groups and non-engineers. 

However, for non-engineers, even the threshold of 

getting started with building a simple prototype is 

very high without approachable tools. 

When the main functionality is conducted with 

Arduino, there is usually a need for optimization on 

component price, mass and volume. Arduino Uno 

uses an Atmega328P microcontroller (Atmel At-

mega328P Datasheet, 2014), which comes in many 

packages, making optimization easier as it can be 

used in many final products. Usually this can be done 

without bulky support electronics used in the devel-

opment board itself. This also eliminates the need for 

reprogramming the software after the prototyping 

phase. 

Software created by the process described in this 

paper includes parts of code created by the external 

group, as well as open source parts such as code ex-

amples and libraries. Some advantages of the open 

source code are quite obvious, for example the possi-

bility to freely use work done by others and promot-

ing stronger user involvement. The open source 

movement has also shown its strength by creating 

some well-established and widely used software, e.g., 

Linux, Apache and Mozilla.  

As with any external software, the quality of the 

code should be checked. According to studies, open 

source projects have some features that support ac-

celerated software development as well as patterns 

that lower the overall code quality. More people 

looking at the code allows more “bugs” to be found, 

which leads to faster software improvement. (Quality 

Assurance under the Open Source Development 

Model p 3) However, this also leads many developers 

to rely on users to validate their software and to pub-

lish minimally tested software (Zhao, 2003). 

It has been found that user participation in open 

source projects can be very high, and users discover 

20% to 40% of the faults in 20% of the projects. This 

kind of high user activity is achieved generally in 

large scale projects, while smaller projects cannot 

expect much contribution. (Zhao, 2003) 

Stamelos, et al. (2002) measured quality charac-

teristics of 100 open source Linux applications by 

using Logiscope software measurement tool. These 

results showed the structural code quality is actually 

higher than could be expected from a limited control 

development process, but still lower than the quality 

implied by the standard proposed by the tool itself. 

According to the used tool, nearly half of the compo-

nents of each application examined called for revisit-

ing the code. 

According to the results cited above, software 

quality assurance should be emphasized when using 

open source components. Using external groups that 

consist of people who are not experts on program-

ming may lead to a need for revisiting and rewriting 

parts, or even all of the code after the prototyping 

phase. Comparing these issues with closed source 

software is impossible, because it cannot be read to 

estimate possible errors. These results should not be 

misinterpreted that using closed source would solve 

code quality issues. Moreover, even if there would be 

a suspected bug, with closed source, one must wait 

and rely on the manufacturer to fix it. With open 

source, it is possible to examine every part of the 

code and verify its suitability for the intended use. 

The following sections investigate the suitability 

of Arduino Uno as a prototyping platform for COTS 

components in the prototyping phase of the develop-

ment process presented in the previous section. 

 

5. Use Case: Sun Sensor Subsystem Prototype 

Development 

 

In the case of the sun sensor subsystem, 

requirements caused by the rest of the Aalto-1 

nanosatellite design prevented using any commercial 

sun sensor subsystems from the market. The external 
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envelope of the sensor part had to be small enough to 

fit on all sides of the satellite for omnidirectional 

measurements, without causing the need to remove 

any solar cells. An attitude and orbit dynamics 

simulator, satellite level requirements, and analysis 

by the electro-static plasma brake payload and ADCS 

providers were used to determine requirements for 

the sensor. The key requirements for the subsystem in 

the beginning of the development project are shown 

in Table 2. 

 

These requirements were given to an external 

group, who proposed Elmos E910.86 Integrated Solar 

Angle Sensor (Elmos Semiconductor, 2010), shown 

in Figure 3, to be used for prototyping with Arduino 

Uno. Before moving to prototyping design, COTS 

component selection was approved by the internal 

group, as incompatible component selection at this 

point would render the next phase useless. This sec-

tion describes the prototype design process done by 

the external group to prototype verification, which is 

done in cooperation with the internal group, as was 

shown in Figure 2. 

Commonly, sensors are connected to hobby 

boards using breadboard or pin headers. However, 

like many COTS integrated circuits, the selected 

sensor E910.86 is physically too small to be used 

with Arduino in this manner, as it is meant for 

surface mounting. Thus, a protoboard, shown in 

Figure 4, was manufactured for the E910.86 with 

needed resistors, capacitors, and a pin header. A 

mounting socket for the Quad Flat No-leads (QFN) 

package component could also be used. However, in 

our case it would have complicated the performing 

tests for the prototype. 

E910.86 uses Serial Peripheral Interface (SPI) to 

communicate with Arduino. SPI.h library is included 

to handle conversations, as defined in the SPI 

protocol (SPI library, 2014). SPI is loosely defined, 

and some values, which are predefined in other 

protocols, must be specified. SPI clock polarity and 

clock phase must be set to 0, which defines timing for 

all conversations between Arduino and E910.86. This 

means the data is read on the rising edge and 

Table 2. Sun Sensor Subsystem Key Requirements 

Requirement Value 

Mass 30 g 

Power 30 mW 

Dimensions 6 mm * 6 mm * 6 mm (external) 

Interface I2C 

Performance 5 deg accuracy (1) in 90 deg FOV when 

Sun visible 

Environmental 

durability 

Temperature range: –70 – +100°C 

 Radiation tolerance: 100 krad total dose 

 

Figure 3. Elmos E910.86 solar angle sensors sized 4 mm * 4mm * 0,5 mm on hand for scale. 
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propagated on the falling edge. Bytesex must be set 

to the most significant byte first. SPI's clock pulse 

frequency needs to be set to 1/4 of Arduino Uno's 

speed. Detailed description of the software has been 

published online (Satellite Sun Sensor Prototype 

Tutorial). 

Before starting the loop, the “master” sends two 

bytes defined in E910.86 data sheet to enable the 

sensor, and starts the conversation by pulling SS-pin 

low, and sends two bytes of data to ask xy-angle from 

the “slave.” The slave answers in two 8-bit-pieces, 

which are combined into one 16-bit-value. This data 

must be parsed to get usable x and y values. Bit 

shifting is used to collect the four first bits to verify 

that package is correct type. Then, bit shifting and bit 

masking is used to pick bits, which are defined in the 

data sheet to form a raw value. The raw value can 

then be converted to degrees. After this, the same 

procedure is done for y values (Satellite Sun Sensor 

Prototype Tutorial). 

When the sun sensor subsystem is connected to 

the satellite, the onboard attitude determination and 

control system (ADCS) (Tikka, 2013) will ask a sun 

vector from it. ADCS is the master and the sun sensor 

subsystem is the slave. The E910.86 is reading values 

all the time, but outputs them via I2C only when it 

receives a query from the master. As the solar angle 

sensor uses SPI and the ADCS I2C, the Arduino was 

programmed to use two different protocols and to 

provide an interface between them. 

As soon as the prototype was working, interface 

and performance tests were conducted. Since the 

ADCS was not yet available when the sun sensor 

subsystem prototyping was started, we used another 

Arduino Uno to simulate the ADCS, as depicted in 

the block diagram Figure 5. 

Using two Arduinos instead of one revealed a 

challenge for debugging: Arduino IDE has a built-in 

support for reading serial port over USB, but it only 

works for one device. This could have been solved by 

 
Figure 4. Sun sensor subsystem prototype version 1. 

 

Figure 5. Block diagram of sun sensor subsystem connected to ADCS simulator. 
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using separate computers for master and slave, but 

the order and timing of the messages would not have 

been seen. In addition, it would have made the basic 

setup much more complicated. To be able to use just 

one computer, a Python program was made to read 

two serial ports. This simple program opens two 

serial ports, reads both from the serial buffer, and 

prints their messages in different colors. Furthermore, 

to automate the code compiling and testing for both 

Arduinos, a Makefile (for GNU Make) was created to 

compile and upload both codes, and run python code 

for reading master and slave serials.  

The E910.86 sensor’s accuracy was specified to 

be 5 degrees in its datasheet, but was tested during 

the prototyping phase to verify it would be sufficient 

for the scientific goals in conjunction with other 

attitude sensors onboard the satellite. The accuracy 

tests were performed on a high accuracy optical table, 

using a motorized rotation stage (Thorlabs CR1/M-

Z7) with wobble of less than 2 arcsecs, and a wide 

spectrum xenon light source simulating the Sun. This 

preliminary performance testing showed the 

E910.86's accuracy is highly quantized, as shown in 

Figure 6, due to a total of 56 raw angle output states 

in its 150 degree field of view. Even though some 

larger errors occur momentarily, the sensor's standard 

deviation (1) was calculated to be 3 degrees in the 

required 90 degree field of view. 

In addition to light angle measurements, the 

sensor was programmed to provide light intensity and 

temperature data. The light intensity information is 

used to remove light angle measurements coming 

from light sources other than from the Sun, most 

importantly from Earth's albedo. During the mission, 

the ADCS selects a sensor with the highest intensity 

value, if it is over a certain threshold. The intensity 

threshold is calibrated on ground with a high power 

sun simulator, but can still be adjusted in orbit if 

needed. The temperature data is on the other hand 

used in sensor calibration, as all temperature 

dependencies can be removed. The validated 

operational characteristics of the sensor were 

modelled to an attitude and orbit dynamics simulator 

in Simulink for testing the whole ADCS control 

loops. The sensor models can also be used in 

hardware-in-loop (HIL) testing of the ADCS control 

algorithms running on real hardware (Tikka, 2013).  

An environmental test campaign was conducted 

for the prototype version. The external placement of 

the sensor on the satellite surface causes thermal 

 

Figure 6. Sun sensor measurement values from –45 deg to 45 deg. True values shown with linear line. 
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variations that are larger than the component design 

values –40 to +85°C. Thus, the sensor was thermal-

cycled while operational for one week from –70 to 

+100°C, according to analysis and environmental test 

standards, and showed to operate without degradation 

even in extreme temperatures. Also, radiation testing 

with 50 MeV protons was performed to investigate if 

single events occur. No single events were noticed; 

however, the E910.86 stopped working after an 

estimated 11 krad total dose. Since the total dose 

experienced by the sensor at the satellite exterior in 

duration of the Aalto-1 mission was expected to be 

much higher, analysis was performed to investigate 

whether adding a cover glass on top of the solar angle 

sensor would provide the required tolerance. 

The results from the tests at prototyping phase 

allowed validating the sensor’s key parameters and 

were decided to fulfill the given requirements, if a 

cover glass is added over the sensor part. Accuracy 

tests were performed again with a cover glass, and 

showed no effect on the accuracy of the sensor. The 

tests also provided a good confidence measurement 

of the sensors operation in the space environment. 

Thus, the final qualification campaign for the sun 

sensor subsystem can be performed later in the 

project without major risks, when the final durability 

and performance requirements are frozen and the rest 

of the ADCS hardware is available. 

 

6. Use Case: Towards the Final Space Instrument 

 

After the prototype phase was finished, the per-

formance and durability of the sensor had already 

been verified preliminarily. The system had been 

shown to fulfill all key requirements, and a decision 

was made to move forward to final development. 

Two separate versions were designed; a stand-alone 

and a solar panel (Finnholm, 2012), integrated ver-

sions shown in Figure 7. For both versions, an inte-

grated microcontroller and other necessary compo-

nents were added to the bottom side of the PCB.  The 

final product has an external envelope of only 

6 mm * 6 mm * 2 mm and the total dimensions of the 

stand-alone version is 18 mm * 18 mm * 6 mm. 

The sun sensor subsystem design was decided 

upon, to exploit the prototype development as much 

as possible. The same microcontroller as in Arduino 

Uno, the Atmega328P in Quad Flat Package (QFP), 

was used in the final version for providing the I2C 

interface and including all measurement interpreta-

tion and calibration as a stand-alone system. This also 

allowed reusing the software written in the prototyp-

ing phase, applying sufficient software quality assur-

ance techniques discussed earlier. 

A PCB design was made to include all necessary 

components for software uploads using an AVRISP 

mkII programmer shown in Figure 8. Finally, a 

 

Figure 7. Stand-alone sun sensor subsystem and sensor integrated on a 3U CubeSat 8 cell solar panel. 
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commercial high-reliability connector was included 

in the design, for robust connectivity to the satellite 

main communication bus. 

A final testing and calibration campaign, includ-

ing the same tests as for the prototype model, was 

performed for the final versions to verify their opera-

tion in the flight equivalent configuration. Addition-

ally, further tests are naturally performed in the satel-

lite level qualification and acceptance campaigns. In 

the end, the final development phase was finished 

with relatively little additional workload and good 

confidence of the sensor’s suitability for the mission, 

due to the possibility of using a large amount of work 

from the prototype development and tests. The final 

characteristics of the developed sun sensor subsystem 

are depicted in Table 3. 

 

7. Results and Discussion 

 

A COTS subsystem development process was 

proposed in Section 3 and followed in the develop-

ment of the Sun sensor subsystem. It was noted that 

by performing prototype development and testing 

with Arduino Uno, all necessary subsystem charac-

teristics can be easily investigated preliminarily, giv-

ing valuable input to component selection and con-

current satellite level design. Also, since the final 

space-instrument was implemented on the same 

hardware platform as Arduino Uno, the software de-

velopment and subsystem testing were able to begin, 

before the final subsystem hardware was implement-

ed. These factors could potentially lower risks asso-

ciated with nanosatellites due to the suitability for a 

concurrent design project, and earlier interface and 

environmental testing possibilities. 

According to this experience, choosing compo-

nents is the biggest factor in defining needed time 

and technical skill level for this kind of prototyping 

project.  If the size and package of the component 

allows it to be directly connected to Arduino or a 

breadboard, some steps that are not beginner friendly 

can be skipped. The need for circuit design and sur-

Table 3. Sun Sensor Subsystem Final Characteristics 

Requirement Value 

Mass 10 g 

Power 8 mW 

Dimensions 6 mm * 6 mm * 2 mm (external) 

Interface I2C 

Performance 3 deg accuracy (1) in 90 deg FOV  

Environmental 

durability 

Temperature range: –70 – +100°C 

 Radiation tolerance: 100 krad total dose 

 

 

Figure 8. PCB design of sun sensor subsystem integrated on a 3U CubeSat 8 cell solar panel. 
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face mounting clearly raise the required skill level for 

prototyping, making it less ideal for non-engineer 

builders. People using hobby boards, such as Ar-

duino, usually work with components built for easy 

connecting, which are documented and often have 

code examples. 

In addition to connecting components, available 

libraries and code examples define how easy the im-

plementation is. For people who are proficient with 

embedded systems design, it does not make such a 

big difference, but for less technically orientated 

groups, examples may be crucial. E910.86 uses SPI, 

a protocol that is loosely defined. Lack of strict defi-

nitions makes using generic SPI codes impossible. 

For example, the polarity and phase of the clock sig-

nal, word length, and bytesex are chosen by the com-

ponent manufacturer. There was no reference imple-

mentation for the E910.86, and writing the SPI inter-

face for Arduino based on its datasheet took over one 

week of work. With this protocol, there is a high 

threshold to get even a simple response from the 

component as a small error renders it completely 

nonfunctional. For comparison, an unrelated SPI 

component that had not been used before, a 

HMC5983 magnetometer from Honeywell, was test-

ed. By using Arduino examples, it was working in 

less than 10 minutes. 

The setup for using two Arduinos and simulating 

the satellite ADCS is also out of the scope of the 

most ordinary Arduino use, and would be challenging 

for people with limited programming experience. 

Providing Arduinos simulating the subsystem inter-

faces to groups building prototypes would remove 

one obstacle from the prototyping process, and en-

sure that the prototype functionality is compatible 

with the rest of the satellite design. Arduino would be 

a sensible option, as it is affordable and its operation 

is relatively easy to understand. Such sample subsys-

tems would also make more comprehensive testing 

possible in very early stages of the project. 

One of the biggest advantages of using Arduino 

or other popular hobby development platforms is the 

online community support and ready-made codes 

with instructions for the components. Satellite com-

ponent requirements may nullify this advantage, as 

the needed off-the-shelf components might not be 

used by hobbyists. One way to prevent this would be 

to use widely used components for the first version of 

the prototype. This strategy would be more feasible 

in a more complex part than the sun sensor subsys-

tem, which has only two main components. 

Using external groups consisting of people with 

limited programming experience underlines the need 

for software quality assurance techniques. All exter-

nal code should be reviewed and the necessary parts 

rewritten after the prototyping phase. Also, if COTS 

components are replaced after prototyping, for exam-

ple with space qualified models, a similar process is 

needed. The possible need for changing the compo-

nents does not however obliterate the advantages of 

the presented prototyping process, such as multidis-

ciplinary accessibility, rapid development, and early 

concept verification. 

 

8. Conclusions 

 

The development process used successfully com-

bined external work with the main project, gave valu-

able input to satellite level development, and the cre-

ated subsystem fulfills the requirements given to it. It 

is one of the smallest sun sensor subsystems availa-

ble, and the accuracy is sufficient for the missions for 

which it was developed. The code package, including 

the sun sensor subsystem and the ADCS simulator, 

was published online (Satellite Sun Sensor Prototype 

Tutorial, 2014). 

Despite the strong hobby and do-it-yourself 

(DIY) background, Arduino proved to be a viable 

development platform for satellite part prototyping. It 

solves many of the low level requirements; however, 

the process required solutions that would have been 

challenging for participants with less technical back-

ground. The use case findings imply that COTS com-

ponent selection has a surprisingly large impact on 

prototype building difficulty level. This should be 

taken into account when using external groups with-

out advanced embedded system skills. In some cases, 

the internal group could help with the component se-

lections or even make pre-selections. 

The cost of the sun sensor subsystem was rela-

tively low. The development of eight sensor subsys-

tems (six for flight and two for development models) 
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cost less than 1,000 € in total. The calculated price 

includes the component and manufacturing prices, 

and excludes personnel and test equipment costs. The 

actual project cost depends largely on the workforce 

used and developer's test facilities. After testing and 

building the first patch of sensors, the development 

and personnel costs for the following pieces would be 

considerably lower. The cost of six commercially 

available alternatives would have been in range of 

15,000 – 59,400 € in total (CubeSatShop).  Commer-

cial alternatives available on 12.2.2015 included Cu-

beSat Sun Sensor (2,500.00 €), SSOC-A60 2-Axis 

accurate sun sensor (4,890.00 €), SSOC-D60 2-Axis 

accurate sun sensor (7,890.00 €), and Digital Fine 

Sun Sensor (9,900.00 €) (CubeSatShop). 

The current test project, which was limited to just 

one subsystem, cannot verify the possible advantages 

of using external groups for increasing innovation 

and knowledge. Nevertheless, the process enabled 

earlier subsystem verification and using diverse 

groups with different expertise for satellite subsystem 

design and prototyping, with some restrictions and 

prerequisites. It is in any case clear that new devel-

opment processes and practices, refined from current 

industry standards, would benefit small satellite de-

velopment and should be investigated further. In the 

future, it would also be interesting to test this with 

external groups using loose requirement specifica-

tions for a part, given the possibility for more innova-

tive and surprising approaches. Interdisciplinary 

groups could also be used to simultaneously provide 

different solutions for the same requirements. 
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