

www.DeepakPublishing.com www. JoSSonline.com

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 301

Karvinen, K., et al. (2015): JoSS, Vol. 4, No. 1, pp. 301–314

(Peer-reviewed Article available at www.jossonline.com)

Using Hobby Prototyping Boards and
Commercial-off-the-shelf (COTS)

Components for Developing Low-cost,
Fast-delivery Satellite Subsystems

Kimmo Karvinen, Tuomas Tikka, and Jaan Praks
Aalto University School of Electrical Engineering, Espoo, Finland

Abstract

The use of small satellites has increased significantly in recent years, and a growing community is partici-

pating in designing and building space instruments. To achieve lower costs and faster delivery times, and to al-

low innovative solutions from people with multidisciplinary backgrounds, easy and straightforward develop-

ment processes and tools are needed. The possibility of having people involved from different areas of expertise

than solely space engineering could bring out innovation and approaches that would not otherwise be possible.

This paper presents a process for developing low-cost, fast-delivery satellite subsystems using commercial

off- the- shelf (COTS) components and investigates the suitability of a readily available open source hobby de-

velopment board (Arduino) in the prototyping phase of this process. The process allows participation of external

groups to the project with a low threshold. The external group can be a group of experts from different fields, or

even a group of students or hobbyists. This practice can facilitate innovation, and lower risks from design un-

certainties in the beginning of development. Open source hobby prototyping tools with COTS components have

several potential benefits for developing small satellite subsystems: low component and platform prices and

shorter development times, achieved by using a platform that takes care of most low-level issues, saves time in

the beginning of the prototyping process, and allows earlier subsystem and satellite level verification.

The current study involved the implementation of sun sensor subsystems for Aalto University's nanosatel-

lites using the tools and processes presented herein, and investigated whether the prototyping process and plat-

form is suitable for the task. An included use case goes through the sun sensor subsystem development process,

along with specifications needed to build one. The process was successful, and the final subsystem requires an

external envelope of only 6 mm * 6 mm * 1 mm for integrating its sensor part, allowing easy integration to solar

panels and being one of the smallest and cheapest satellite sun sensors available.

Corresponding Author: Kimmo Karvinen, kimmo.karvinen@iki.fi

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 302

1. Introduction

The use of small satellites has increased signifi-

cantly in the past years, especially nanosatellites

weighing only 1–10 kilograms (Swartwout, 2013).

The lower cost compared to conventional satellites

allows universities, small start-up companies and

non-space-faring nations to develop experimental

spacecraft and subsystems (Woellert, 2010). Also, the

traditional space industry has moved towards a faster,

better, cheaper (FBC) approach (Paxton, 2007).

The central idea of building nanosatellites is gen-

erally to achieve faster delivery and lower costs com-

pared to conventional satellites, typically at the ex-

pense of reliability and performance. To keep costs

low, using commercial of the shelf (COTS) compo-

nents and subsystems is very typical (Dubos, 2010).

Many mass-production and open-market electronic

components and integrated circuits (IC) may be uti-

lized in small satellite systems, even if they are de-

signed for terrestrial use. They often offer sufficient

performance for a nanosatellite with a much more

affordable price than space-grade equivalents. How-

ever, dedicated methods and processes are required

for validating their durability and performance early

within a satellite project, since their suitability to ful-

fill mission requirements is often unclear.

Many nanosatellite subsystems can be procured

from the market and integrated to the satellite with

ease, if for example CubeSat Kit specifications are

followed. The availability of such subsystems has

further decreased development times of small satel-

lite projects, allowing further overall project cost and

time reductions. However, some subsystems required

for a specific satellite mission may not be available

off-the-shelf, or do not offer the best possible com-

patibility with the rest of the satellite design. Thus,

they have to be developed concurrently within a fast-

paced nanosatellite project.

This paper examines the suitability of using an

open-source hobby prototyping platform (Arduino) in

a new refined development process of building

nanosatellite subsystems by using COTS compo-

nents, while presenting Aalto University's nano-

satellite project as a case example. Using such a plat-

form in the early phase of the development would

potentially allow validating component selections and

provide valuable input to satellite level design. Also,

since a large number of nanosatellite projects have

educational objectives, a simple, easily available and

open-source prototyping platform would potentially

make the development project more approachable for

a wider group of people and lead to interdisciplinary

innovations.

A development project of a miniature digital sun

sensor subsystem is presented as an example, but the

same practices can also be used in the development

of other small satellite subsystems built with COTS

components. The sun sensor subsystem was devel-

oped for the needs of the electro-static plasma

brake/sail experiment onboard the Aalto-1 nano-

satellite (Khurshid, 2014) and as the main absolute

attitude sensor in the Aalto-2 nanosatellite, taking

part in the international QB50 atmospheric science

mission (Gill, 2013).

This paper is divided into eight sections: The sec-

ond section presents related work and background on

the subject. The third section presents a development

process for small satellite subsystem development

using COTS components. The fourth turns to discus-

sion of the potential benefits of using hobby devel-

opment platforms, and the fifth section presents a use

case of sun sensor subsystem prototyping. The sixth

section presents the steps taken after the prototyping

phase for the final space-instrument development,

and the seventh presents results and discussion, with

concluding remarks in section eight.

2. Small Satellite Design Methodology

To permit timely and reliable subsystem devel-

opment concurrently within a fast-paced small satel-

lite project, new development and quality processes

should be investigated. Unfortunately, traditional

space industry standards cannot be followed directly,

and there is little public information available about

actual practices used in small satellite subsystem de-

velopment and testing. Still, even in the case of

nanosatellites, considerable but low-cost efforts

should be taken to validate systems under develop-

ment. In many nanosatellite projects, inadequate de-

velopment practices have caused too little time and

Using Hobby Prototyping Boards and Commercial-off-the-shelf (COTS)

Components for Developing Low-cost, Fast-delivery Satellite Subsystems

 Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 303

effort for thorough software development and inter-

face testing, which may lead to project delays, in-

creased costs, and high infant mortality rates (Swart-

wout, 2013). Fortunately, it is expected that a proper-

ly tailored combination of traditional parts assurance

techniques and assembly level screening with qualifi-

cation testing can also produce a reliable design for

nanosatellites (Rose, 2012).

Small satellite projects are usually very dynamic

by nature, and requirements may change late in the

project due to many ambiguities caused by the con-

current design approach. To control the associated

risks, agile system engineering practices generally

used in software projects have been proposed to be

used in nanosatellite projects (Huang, 2012). Moreo-

ver, new verification strategies have been developed

(Eickhoff, 2007) (Hendrics, 2005), allowing concur-

rent development and earlier satellite level verifica-

tion. In these strategies, simulation and development

models are used to allow starting software develop-

ment as soon as possible, and verifying interfaces

between different subsystems before the final hard-

ware is available. To obtain realistic analysis results

from such simulation environments, subsystem char-

acteristics should be validated and included in the

simulations.

As many small satellites are used either for edu-

cational or technology demonstration purposes

(Swartwout, 2013) and the project teams consist of a

small internal group of space technology profession-

als, the importance of allowing the use of new inno-

vative technologies and external experts should be

emphasized. The typical organizational structure of

nanosatellite projects at Aalto University is depicted

in Figure 1 as an example. In a small satellite organi-

zation, the internal group is formed of space technol-

ogy professionals responsible for project planning,

specifications, management, and final implementa-

tion, while external groups are interdisciplinary con-

tributors participating only on a defined part of the

project.

Measuring increased innovation potential is not

unequivocal, as are component cost and development

time. Nonetheless, innovation research supports the

idea of accelerating innovation by using a greater

number of internal and external sources for ideas. Ef-

fective use of both internal and external paths leads to

better results than relying solely to internal experts

(Chesbrough, 2006). One of the main parts is to inte-

grate internal and external knowledge with a combi-

nation of more complex knowledge (Chesbrough,

2006). Modular small satellite projects provide a

Figure 1. Small satellite project organizational structure.

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 304

good setting for this kind of approach, as long as

there is a straightforward process in which different

groups can participate. Providing an approachable

process and development platform to build satellite

subsystems enables others, in addition to space tech-

nology professionals, to contribute in a way that is

directly adaptable to the actual project.

3. Small Satellite Subsystem Development Process

An agile process for developing small satellite

subsystems using COTS components and external

groups is presented in this section. The process is re-

fined from the traditional space system development

process flow depicted, e.g., in the ECSS-M-ST-10C

(European Cooperation for Space Standardization,

2009), but takes into consideration the need for agile

development and early validation of subsystem de-

signs. The main differences to the standard process

include an iterative requirement specification ap-

proach, further emphasis on testing already at a pro-

totyping phase, and a straightforward interface for

including external developer groups. The develop-

ment process used in Aalto University's nanosatellite

projects is presented in Figure 2, showing inputs to

the concurrent satellite level design process.

The development starts by setting out require-

ments on the satellite level, which fulfill the mission

statement and intended functions. Satellite-level re-

quirements form the baseline for development, and

are further complemented with lower level require-

ments, typically for each subsystem or development

Figure 2. COTS subsystem development flow with iterative requirement specification, input to satellite level design and an option of including

external groups.

Using Hobby Prototyping Boards and Commercial-off-the-shelf (COTS)

Components for Developing Low-cost, Fast-delivery Satellite Subsystems

 Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 305

branch. A single developer can be contributing to

several development branches, and aspects of a single

subsystem may be part of several development

branches.

While satellite level requirements are given as an

input, exact subsystem requirements and design val-

ues are iterated on-the-fly, during prototype devel-

opment and testing in meetings between affected in-

ternal and external groups. These updates can be add-

ed to requirement compliance matrices, automated

design budgets, and satellite level analyses. One

should note that the subsystem level requirements can

be decreased only if the satellite-level system can

compensate for it. Typical key requirement types and

sources from which they can typically be determined,

even in the very early part of the project, are present-

ed in Table 1 as an example.

Since very strict requirement specification limits

the possible outcomes of the prototyping process, a

certain degree of freedom should be allowed. Very

strict requirements assure the applicability in the

main project, but also diminish the possibility for in-

novative and unconventional solutions. One should

take into account that making specifications that can-

not be fulfilled by using any commercially available

options is a possibility. Hence, the specifications

need to be open for modifications according to COTS

suitability and availability. As soon as the component

candidates have been selected, preliminary character-

istics from datasheets can be included in the satellite-

level design tools, e.g., simulators and budgets, to

investigate their suitability for the mission.

Each development branch goes through the proto-

typing phase and final phase independently. The pro-

totyping phase is used to identify applicable COTS

technologies, test them, and confirm that the subsys-

tem-level requirements are applicable with available

COTS components. External groups may be used in

this phase for COTS selection, prototype design, and

to some extent for prototype verification, as shown in

Figure 2. Proceeding to the final phase in a develop-

ment branch means freezing down the subsystem re-

quirements and building a flight equivalent system.

The verification of the subsystem is divided into

prototype and final verification for early assessment

of the selected COTS components in relation to the

specified requirements. Once the prototype version is

ready, already in the very early part of the develop-

ment, a testing campaign is conducted. The testing

may follow traditional commercial electrical, elec-

tronic, and electromechanical (EEE) component tests,

depicted, e.g., in ECSS-Q-ST-60-13C (European Co-

operation for Space Standardization, 2013), tailored

to meet the required level of reliability. One should

note that the durability and performance of the pro-

cured components may differ from components test-

ed by the manufacturer as they are usually not from

the same manufacturing batch and may have been

modified. Especially if environmental durability re-

quirements exceed the tests done by the manufactur-

er, the components should be tested with appropriate

levels already in the prototyping phase. These tests

usually include further thermal tests and radiation

testing. Also, subsystem interfaces should be tested

with functional tests on other subsystems or subsys-

tem simulators.

4. Using Open-source Hobby Development Plat-

forms

A readily available development platform for the

prototyping phase, taking care of most low-level is-

sues, such as connecting input and outputs along with

an integrated development environment (IDE), would

allow a wide range of developers to be involved in

the subsystem design project. Arduino Uno is cur-

rently the most popular open-source hobby develop-

ment board, including a microcontroller, a boot-

Table 1. Key Requirements and Sources from Which they are Defined

Requirement/

Subsystem level
Source / Satellite level

Mass Mass budget

Power Power budget

Dimensions CAD model

Interface System diagram

Performance Mission simulation / analysis

Environmental

durability

Standard / analysis

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 306

loader, high level C++ libraries and an integrated de-

velopment environment (IDE) (Arduino Uno, 2014).

It has a well-established user base and wide support

from both online communities and component sup-

pliers. David Cuartielles, the co-founder of Arduino,

stated in 2013 that there were over 700,000 registered

official Arduino boards. In addition, he estimated that

there is at least one clone board per every official Ar-

duino (Medea, 2013).

While members of external groups can be experts

in their own area, it is possible that they are not em-

bedded system professionals. Advantages of a

straightforward prototyping processes are highlighted

with interdisciplinary groups and non-engineers.

However, for non-engineers, even the threshold of

getting started with building a simple prototype is

very high without approachable tools.

When the main functionality is conducted with

Arduino, there is usually a need for optimization on

component price, mass and volume. Arduino Uno

uses an Atmega328P microcontroller (Atmel At-

mega328P Datasheet, 2014), which comes in many

packages, making optimization easier as it can be

used in many final products. Usually this can be done

without bulky support electronics used in the devel-

opment board itself. This also eliminates the need for

reprogramming the software after the prototyping

phase.

Software created by the process described in this

paper includes parts of code created by the external

group, as well as open source parts such as code ex-

amples and libraries. Some advantages of the open

source code are quite obvious, for example the possi-

bility to freely use work done by others and promot-

ing stronger user involvement. The open source

movement has also shown its strength by creating

some well-established and widely used software, e.g.,

Linux, Apache and Mozilla.

As with any external software, the quality of the

code should be checked. According to studies, open

source projects have some features that support ac-

celerated software development as well as patterns

that lower the overall code quality. More people

looking at the code allows more “bugs” to be found,

which leads to faster software improvement. (Quality

Assurance under the Open Source Development

Model p 3) However, this also leads many developers

to rely on users to validate their software and to pub-

lish minimally tested software (Zhao, 2003).

It has been found that user participation in open

source projects can be very high, and users discover

20% to 40% of the faults in 20% of the projects. This

kind of high user activity is achieved generally in

large scale projects, while smaller projects cannot

expect much contribution. (Zhao, 2003)

Stamelos, et al. (2002) measured quality charac-

teristics of 100 open source Linux applications by

using Logiscope software measurement tool. These

results showed the structural code quality is actually

higher than could be expected from a limited control

development process, but still lower than the quality

implied by the standard proposed by the tool itself.

According to the used tool, nearly half of the compo-

nents of each application examined called for revisit-

ing the code.

According to the results cited above, software

quality assurance should be emphasized when using

open source components. Using external groups that

consist of people who are not experts on program-

ming may lead to a need for revisiting and rewriting

parts, or even all of the code after the prototyping

phase. Comparing these issues with closed source

software is impossible, because it cannot be read to

estimate possible errors. These results should not be

misinterpreted that using closed source would solve

code quality issues. Moreover, even if there would be

a suspected bug, with closed source, one must wait

and rely on the manufacturer to fix it. With open

source, it is possible to examine every part of the

code and verify its suitability for the intended use.

The following sections investigate the suitability

of Arduino Uno as a prototyping platform for COTS

components in the prototyping phase of the develop-

ment process presented in the previous section.

5. Use Case: Sun Sensor Subsystem Prototype

Development

In the case of the sun sensor subsystem,

requirements caused by the rest of the Aalto-1

nanosatellite design prevented using any commercial

sun sensor subsystems from the market. The external

Using Hobby Prototyping Boards and Commercial-off-the-shelf (COTS)

Components for Developing Low-cost, Fast-delivery Satellite Subsystems

 Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 307

envelope of the sensor part had to be small enough to

fit on all sides of the satellite for omnidirectional

measurements, without causing the need to remove

any solar cells. An attitude and orbit dynamics

simulator, satellite level requirements, and analysis

by the electro-static plasma brake payload and ADCS

providers were used to determine requirements for

the sensor. The key requirements for the subsystem in

the beginning of the development project are shown

in Table 2.

These requirements were given to an external

group, who proposed Elmos E910.86 Integrated Solar

Angle Sensor (Elmos Semiconductor, 2010), shown

in Figure 3, to be used for prototyping with Arduino

Uno. Before moving to prototyping design, COTS

component selection was approved by the internal

group, as incompatible component selection at this

point would render the next phase useless. This sec-

tion describes the prototype design process done by

the external group to prototype verification, which is

done in cooperation with the internal group, as was

shown in Figure 2.

Commonly, sensors are connected to hobby

boards using breadboard or pin headers. However,

like many COTS integrated circuits, the selected

sensor E910.86 is physically too small to be used

with Arduino in this manner, as it is meant for

surface mounting. Thus, a protoboard, shown in

Figure 4, was manufactured for the E910.86 with

needed resistors, capacitors, and a pin header. A

mounting socket for the Quad Flat No-leads (QFN)

package component could also be used. However, in

our case it would have complicated the performing

tests for the prototype.

E910.86 uses Serial Peripheral Interface (SPI) to

communicate with Arduino. SPI.h library is included

to handle conversations, as defined in the SPI

protocol (SPI library, 2014). SPI is loosely defined,

and some values, which are predefined in other

protocols, must be specified. SPI clock polarity and

clock phase must be set to 0, which defines timing for

all conversations between Arduino and E910.86. This

means the data is read on the rising edge and

Table 2. Sun Sensor Subsystem Key Requirements

Requirement Value

Mass 30 g

Power 30 mW

Dimensions 6 mm * 6 mm * 6 mm (external)

Interface I2C

Performance 5 deg accuracy (1) in 90 deg FOV when

Sun visible

Environmental

durability

Temperature range: –70 – +100°C

 Radiation tolerance: 100 krad total dose

Figure 3. Elmos E910.86 solar angle sensors sized 4 mm * 4mm * 0,5 mm on hand for scale.

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 308

propagated on the falling edge. Bytesex must be set

to the most significant byte first. SPI's clock pulse

frequency needs to be set to 1/4 of Arduino Uno's

speed. Detailed description of the software has been

published online (Satellite Sun Sensor Prototype

Tutorial).

Before starting the loop, the “master” sends two

bytes defined in E910.86 data sheet to enable the

sensor, and starts the conversation by pulling SS-pin

low, and sends two bytes of data to ask xy-angle from

the “slave.” The slave answers in two 8-bit-pieces,

which are combined into one 16-bit-value. This data

must be parsed to get usable x and y values. Bit

shifting is used to collect the four first bits to verify

that package is correct type. Then, bit shifting and bit

masking is used to pick bits, which are defined in the

data sheet to form a raw value. The raw value can

then be converted to degrees. After this, the same

procedure is done for y values (Satellite Sun Sensor

Prototype Tutorial).

When the sun sensor subsystem is connected to

the satellite, the onboard attitude determination and

control system (ADCS) (Tikka, 2013) will ask a sun

vector from it. ADCS is the master and the sun sensor

subsystem is the slave. The E910.86 is reading values

all the time, but outputs them via I2C only when it

receives a query from the master. As the solar angle

sensor uses SPI and the ADCS I2C, the Arduino was

programmed to use two different protocols and to

provide an interface between them.

As soon as the prototype was working, interface

and performance tests were conducted. Since the

ADCS was not yet available when the sun sensor

subsystem prototyping was started, we used another

Arduino Uno to simulate the ADCS, as depicted in

the block diagram Figure 5.

Using two Arduinos instead of one revealed a

challenge for debugging: Arduino IDE has a built-in

support for reading serial port over USB, but it only

works for one device. This could have been solved by

Figure 4. Sun sensor subsystem prototype version 1.

Figure 5. Block diagram of sun sensor subsystem connected to ADCS simulator.

Using Hobby Prototyping Boards and Commercial-off-the-shelf (COTS)

Components for Developing Low-cost, Fast-delivery Satellite Subsystems

 Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 309

using separate computers for master and slave, but

the order and timing of the messages would not have

been seen. In addition, it would have made the basic

setup much more complicated. To be able to use just

one computer, a Python program was made to read

two serial ports. This simple program opens two

serial ports, reads both from the serial buffer, and

prints their messages in different colors. Furthermore,

to automate the code compiling and testing for both

Arduinos, a Makefile (for GNU Make) was created to

compile and upload both codes, and run python code

for reading master and slave serials.

The E910.86 sensor’s accuracy was specified to

be 5 degrees in its datasheet, but was tested during

the prototyping phase to verify it would be sufficient

for the scientific goals in conjunction with other

attitude sensors onboard the satellite. The accuracy

tests were performed on a high accuracy optical table,

using a motorized rotation stage (Thorlabs CR1/M-

Z7) with wobble of less than 2 arcsecs, and a wide

spectrum xenon light source simulating the Sun. This

preliminary performance testing showed the

E910.86's accuracy is highly quantized, as shown in

Figure 6, due to a total of 56 raw angle output states

in its 150 degree field of view. Even though some

larger errors occur momentarily, the sensor's standard

deviation (1) was calculated to be 3 degrees in the

required 90 degree field of view.

In addition to light angle measurements, the

sensor was programmed to provide light intensity and

temperature data. The light intensity information is

used to remove light angle measurements coming

from light sources other than from the Sun, most

importantly from Earth's albedo. During the mission,

the ADCS selects a sensor with the highest intensity

value, if it is over a certain threshold. The intensity

threshold is calibrated on ground with a high power

sun simulator, but can still be adjusted in orbit if

needed. The temperature data is on the other hand

used in sensor calibration, as all temperature

dependencies can be removed. The validated

operational characteristics of the sensor were

modelled to an attitude and orbit dynamics simulator

in Simulink for testing the whole ADCS control

loops. The sensor models can also be used in

hardware-in-loop (HIL) testing of the ADCS control

algorithms running on real hardware (Tikka, 2013).

An environmental test campaign was conducted

for the prototype version. The external placement of

the sensor on the satellite surface causes thermal

Figure 6. Sun sensor measurement values from –45 deg to 45 deg. True values shown with linear line.

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 310

variations that are larger than the component design

values –40 to +85°C. Thus, the sensor was thermal-

cycled while operational for one week from –70 to

+100°C, according to analysis and environmental test

standards, and showed to operate without degradation

even in extreme temperatures. Also, radiation testing

with 50 MeV protons was performed to investigate if

single events occur. No single events were noticed;

however, the E910.86 stopped working after an

estimated 11 krad total dose. Since the total dose

experienced by the sensor at the satellite exterior in

duration of the Aalto-1 mission was expected to be

much higher, analysis was performed to investigate

whether adding a cover glass on top of the solar angle

sensor would provide the required tolerance.

The results from the tests at prototyping phase

allowed validating the sensor’s key parameters and

were decided to fulfill the given requirements, if a

cover glass is added over the sensor part. Accuracy

tests were performed again with a cover glass, and

showed no effect on the accuracy of the sensor. The

tests also provided a good confidence measurement

of the sensors operation in the space environment.

Thus, the final qualification campaign for the sun

sensor subsystem can be performed later in the

project without major risks, when the final durability

and performance requirements are frozen and the rest

of the ADCS hardware is available.

6. Use Case: Towards the Final Space Instrument

After the prototype phase was finished, the per-

formance and durability of the sensor had already

been verified preliminarily. The system had been

shown to fulfill all key requirements, and a decision

was made to move forward to final development.

Two separate versions were designed; a stand-alone

and a solar panel (Finnholm, 2012), integrated ver-

sions shown in Figure 7. For both versions, an inte-

grated microcontroller and other necessary compo-

nents were added to the bottom side of the PCB. The

final product has an external envelope of only

6 mm * 6 mm * 2 mm and the total dimensions of the

stand-alone version is 18 mm * 18 mm * 6 mm.

The sun sensor subsystem design was decided

upon, to exploit the prototype development as much

as possible. The same microcontroller as in Arduino

Uno, the Atmega328P in Quad Flat Package (QFP),

was used in the final version for providing the I2C

interface and including all measurement interpreta-

tion and calibration as a stand-alone system. This also

allowed reusing the software written in the prototyp-

ing phase, applying sufficient software quality assur-

ance techniques discussed earlier.

A PCB design was made to include all necessary

components for software uploads using an AVRISP

mkII programmer shown in Figure 8. Finally, a

Figure 7. Stand-alone sun sensor subsystem and sensor integrated on a 3U CubeSat 8 cell solar panel.

Using Hobby Prototyping Boards and Commercial-off-the-shelf (COTS)

Components for Developing Low-cost, Fast-delivery Satellite Subsystems

 Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 311

commercial high-reliability connector was included

in the design, for robust connectivity to the satellite

main communication bus.

A final testing and calibration campaign, includ-

ing the same tests as for the prototype model, was

performed for the final versions to verify their opera-

tion in the flight equivalent configuration. Addition-

ally, further tests are naturally performed in the satel-

lite level qualification and acceptance campaigns. In

the end, the final development phase was finished

with relatively little additional workload and good

confidence of the sensor’s suitability for the mission,

due to the possibility of using a large amount of work

from the prototype development and tests. The final

characteristics of the developed sun sensor subsystem

are depicted in Table 3.

7. Results and Discussion

A COTS subsystem development process was

proposed in Section 3 and followed in the develop-

ment of the Sun sensor subsystem. It was noted that

by performing prototype development and testing

with Arduino Uno, all necessary subsystem charac-

teristics can be easily investigated preliminarily, giv-

ing valuable input to component selection and con-

current satellite level design. Also, since the final

space-instrument was implemented on the same

hardware platform as Arduino Uno, the software de-

velopment and subsystem testing were able to begin,

before the final subsystem hardware was implement-

ed. These factors could potentially lower risks asso-

ciated with nanosatellites due to the suitability for a

concurrent design project, and earlier interface and

environmental testing possibilities.

According to this experience, choosing compo-

nents is the biggest factor in defining needed time

and technical skill level for this kind of prototyping

project. If the size and package of the component

allows it to be directly connected to Arduino or a

breadboard, some steps that are not beginner friendly

can be skipped. The need for circuit design and sur-

Table 3. Sun Sensor Subsystem Final Characteristics

Requirement Value

Mass 10 g

Power 8 mW

Dimensions 6 mm * 6 mm * 2 mm (external)

Interface I2C

Performance 3 deg accuracy (1) in 90 deg FOV

Environmental

durability

Temperature range: –70 – +100°C

 Radiation tolerance: 100 krad total dose

Figure 8. PCB design of sun sensor subsystem integrated on a 3U CubeSat 8 cell solar panel.

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 312

face mounting clearly raise the required skill level for

prototyping, making it less ideal for non-engineer

builders. People using hobby boards, such as Ar-

duino, usually work with components built for easy

connecting, which are documented and often have

code examples.

In addition to connecting components, available

libraries and code examples define how easy the im-

plementation is. For people who are proficient with

embedded systems design, it does not make such a

big difference, but for less technically orientated

groups, examples may be crucial. E910.86 uses SPI,

a protocol that is loosely defined. Lack of strict defi-

nitions makes using generic SPI codes impossible.

For example, the polarity and phase of the clock sig-

nal, word length, and bytesex are chosen by the com-

ponent manufacturer. There was no reference imple-

mentation for the E910.86, and writing the SPI inter-

face for Arduino based on its datasheet took over one

week of work. With this protocol, there is a high

threshold to get even a simple response from the

component as a small error renders it completely

nonfunctional. For comparison, an unrelated SPI

component that had not been used before, a

HMC5983 magnetometer from Honeywell, was test-

ed. By using Arduino examples, it was working in

less than 10 minutes.

The setup for using two Arduinos and simulating

the satellite ADCS is also out of the scope of the

most ordinary Arduino use, and would be challenging

for people with limited programming experience.

Providing Arduinos simulating the subsystem inter-

faces to groups building prototypes would remove

one obstacle from the prototyping process, and en-

sure that the prototype functionality is compatible

with the rest of the satellite design. Arduino would be

a sensible option, as it is affordable and its operation

is relatively easy to understand. Such sample subsys-

tems would also make more comprehensive testing

possible in very early stages of the project.

One of the biggest advantages of using Arduino

or other popular hobby development platforms is the

online community support and ready-made codes

with instructions for the components. Satellite com-

ponent requirements may nullify this advantage, as

the needed off-the-shelf components might not be

used by hobbyists. One way to prevent this would be

to use widely used components for the first version of

the prototype. This strategy would be more feasible

in a more complex part than the sun sensor subsys-

tem, which has only two main components.

Using external groups consisting of people with

limited programming experience underlines the need

for software quality assurance techniques. All exter-

nal code should be reviewed and the necessary parts

rewritten after the prototyping phase. Also, if COTS

components are replaced after prototyping, for exam-

ple with space qualified models, a similar process is

needed. The possible need for changing the compo-

nents does not however obliterate the advantages of

the presented prototyping process, such as multidis-

ciplinary accessibility, rapid development, and early

concept verification.

8. Conclusions

The development process used successfully com-

bined external work with the main project, gave valu-

able input to satellite level development, and the cre-

ated subsystem fulfills the requirements given to it. It

is one of the smallest sun sensor subsystems availa-

ble, and the accuracy is sufficient for the missions for

which it was developed. The code package, including

the sun sensor subsystem and the ADCS simulator,

was published online (Satellite Sun Sensor Prototype

Tutorial, 2014).

Despite the strong hobby and do-it-yourself

(DIY) background, Arduino proved to be a viable

development platform for satellite part prototyping. It

solves many of the low level requirements; however,

the process required solutions that would have been

challenging for participants with less technical back-

ground. The use case findings imply that COTS com-

ponent selection has a surprisingly large impact on

prototype building difficulty level. This should be

taken into account when using external groups with-

out advanced embedded system skills. In some cases,

the internal group could help with the component se-

lections or even make pre-selections.

The cost of the sun sensor subsystem was rela-

tively low. The development of eight sensor subsys-

tems (six for flight and two for development models)

Using Hobby Prototyping Boards and Commercial-off-the-shelf (COTS)

Components for Developing Low-cost, Fast-delivery Satellite Subsystems

 Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 313

cost less than 1,000 € in total. The calculated price

includes the component and manufacturing prices,

and excludes personnel and test equipment costs. The

actual project cost depends largely on the workforce

used and developer's test facilities. After testing and

building the first patch of sensors, the development

and personnel costs for the following pieces would be

considerably lower. The cost of six commercially

available alternatives would have been in range of

15,000 – 59,400 € in total (CubeSatShop). Commer-

cial alternatives available on 12.2.2015 included Cu-

beSat Sun Sensor (2,500.00 €), SSOC-A60 2-Axis

accurate sun sensor (4,890.00 €), SSOC-D60 2-Axis

accurate sun sensor (7,890.00 €), and Digital Fine

Sun Sensor (9,900.00 €) (CubeSatShop).

The current test project, which was limited to just

one subsystem, cannot verify the possible advantages

of using external groups for increasing innovation

and knowledge. Nevertheless, the process enabled

earlier subsystem verification and using diverse

groups with different expertise for satellite subsystem

design and prototyping, with some restrictions and

prerequisites. It is in any case clear that new devel-

opment processes and practices, refined from current

industry standards, would benefit small satellite de-

velopment and should be investigated further. In the

future, it would also be interesting to test this with

external groups using loose requirement specifica-

tions for a part, given the possibility for more innova-

tive and surprising approaches. Interdisciplinary

groups could also be used to simultaneously provide

different solutions for the same requirements.

Acknowledgments

The authors would like to thank Tero Karvinen,

Ville Kyrki, Hannu Leppinen, the Multidisciplinary

Insitute of Digitalisation and Energy, and Tekes – the

Finnish Funding Agency for Innovation.

References

Arduino FAQ (David Cuartielles) (2013): Available:

http://medea.mah.se/2013/04/arduino-faq/ (ac-

cessed May 5, 2015).

Arduino Uno (2014): Available: http://arduino.cc/en/

Main/arduinoBoardUno (accessed May 5, 2015).

Atmel Atmega328P Datasheet (2014): Available:

http://www.atmel.com/Images/doc8161.pdf (ac-

cessed May 5, 2015).

Chesbrough, H. (2006): Open Innovation: The New

Imperative for Creating and Profiting from Tech-

nology. Boston, Harvard Business School Press.

CubeSatShop (2015): Available: http://www.

cubesatshop.com/ (accessed February 25, 2015).

Dubos, G., et al. (2010): Statistical Reliability Analy-

sis of Satellites by Mass Category: Does Space-

craft Size Matter? Acta Astronautica, Vol. 67, pp.

584–595.

European Cooperation for Space Standardization

(2009): Space Project Management, Project plan-

ning and implementation. Available: http://

www.ecss.nl (accessed February 25, 2015).

European Cooperation for Space Standardization

(2013): Space Project Assurance, Electrical, Elec-

tronic and Electromechanical (EEE) Components.

Available: http://www.ecss.nl (accessed February

25, 2015).

Eickhoff, J., et al. (2007): Model-based Design and

Verification – State of the Art from Galileo Con-

stellation Down to Small University Satellites,

Acta Astronautica, Vol. 61, pp. 383–390.

Elmos Semiconductor E910.86 Datasheet (2010):

Available: www.mouser.com/ds/2/594/910_86-

224506.pdf (accessed May 5, 2015).

Finnholm, J., et al. (2013): Design and Manufactur-

ing of Aalto-1 Solar Panels, in Proc. of the 2nd

IAA Conf. on University Satellite Missions and

Cubesat Workshop, pp. 726–734.

Gill, E., et al. (2013): Formation Flying Within a

Constellation of Nano-satellites: The QB50 Mis-

sion. Acta Astronautica, Vol. 82, Issue 1, pp.

110–117.

Hendricks, R. and Eickhoff, J. (2005): The Signifi-

cant Role of Simulation in Satellite Development

and Verification. Aerospace Sci. and Technology,

Vol. 9, pp. 273–283.

Huang, P., et al. (2012): Agile Hardware and Soft-

ware System Engineering for Innovation, pre-

sented at the IEEE Aerospace Conf., Big Sky,

MT, March 3–10, 2012.

Karvinen, K., et al.

Copyright © A. Deepak Publishing. All rights reserved.

JoSS, Vol. 4, No. 1, p. 314

Khurshid, O. and Tikka, T., et al. (2014): Accommo-

dating the Plasma Brake Experiment On-board

the Aalto-1 Satellite, in Proc. of the Estonian

Academy of Sciences, Vol. 63 (2S), pp. 258–266.

Paxton, L. (2007): "Faster, Better, and Cheaper" at

NASA: Lessons Learned in Managing and Ac-

cepting Risk. Acta Astronautica, Vol. 61, Issue

10, pp. 954–963.

Rose, R., et al. (2012): CubeSats to NanoSats; Bridg-

ing the Gap Between Educational Tools and Sci-

ence Workhorses, presented at the IEEE Aero-

space Conf., Big Sky, MT, March 3–10, 2012.

Satellite Sun Sensor Prototype Tutorial (2014):

Available: http://botbook.com/satellite/ (accessed

February 25, 2015).

SPI library (2014): Available: http://arduino.cc/en/

Reference/SPI (accessed May 5, 2015).

Stamelos, I., et al. (2002): Code Quality Analysis in

Open Source Software Development. Inform.

Syst. J., Vol. 12, Issue 1, pp. 43–60.

Swartwout, M. (2013): The First One Hundred Cu-

beSats: A Statistical Look. JoSS, Vol. 2, pp. 213–

233.

Tikka T., et al. (2013): Low-cost and Fast-delivery

Verification Strategy for the Aalto-1 Nano-

satellite Attitude Determination and Control Sys-

tem, presented at the 5th Nano-Satellite Symposi-

um, University of Tokyo, Japan, November 2013.

Tikka, T., et al. (2013): Attitude Determination and

Control System Implementation for the Aalto-1

Nanosatellite, in Proc. of the 2nd IAA Conf. on

University Satellite Missions and CubeSat Work-

shop, pp. 676–694.

Woellert, K. (2011): Cubesats: Cost-effective Science

and Technology Platforms for Emerging and De-

veloping Nations. Advances in Space Research,

Vol. 47, pp. 663–684.

Zhao, L. and Elbaum, S. (2003): Quality Assurance

under the Open Source Development Model. J. of

Syst. and Software, Vol. 66 (1), pp. 65–75.

