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Abstract 

 

In this research, a methodology has been developed for on-the-ground testing of visual navigation sensors for 

use on small satellites such as CubeSats. This process consists of a series of tests, including simulation, software-

in-the-loop testing, and hardware-in-the-loop validation. Simulation consists of generating virtual images using 

specified camera and satellite parameters. Software-in-the-loop testing processes these virtual images through the 

visual navigation algorithms and verifies the results. Hardware-in-the-loop validation is performed using the same 

tests with actual images captured in situations analogous to those expected on orbit. The tests are intended to 

demonstrate both far field (e.g. star camera) and near field (e.g. proximity navigation) functions of dual use im-

aging sensors. Collectively, the analysis and testing suite creates a relatively simple validation process for imaging 

sensors, such as those primarily intended for use on small satellites. 

 

 Introduction 

 

1.1. Role of imaging in small satellites  

Low-cost, reliable imaging systems are vital for 

future small satellite applications. Imaging systems are 

a key component in proximity operations, a necessary 

capability for commonly proposed small satellite mis-

sions involving constellations or rendezvous with a 

target spacecraft. Star tracking algorithms provide pre-

cision attitude determination in sunlight or eclipse, fa-

cilitating operations like targeted imaging or high data 

rate radio communication. Reliable imaging on small 

satellites greatly expands the mission types that they 

can perform and needs to be accessible to small satel-

lite providers who do not have the large budget or staff 

of larger satellite teams.  

1.2. Proximity operations  

Technical advances in vision processing systems 

are enabling new capabilities in spacecraft autono-

mous visual navigation. The role of the infrared cam-

era on the SpaceX Dragon capsule autonomous dock-

ing system on its resupply mission to the International 

Space Station in 2012 showed that vision systems can 

be used for autonomous proximity sensing and relative 

navigation. The potential applications of this technol-

ogy include important operations: satellite formation 

flying, autonomous rendezvous and docking, coordi-

nated relative control, and on-orbit inspection, servic-

ing, and assembly. Moreover, an autonomous object 

detection system can be used for space debris hazard 

mitigation and collision avoidance. Advances in imag-
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ing systems and their associated electronics are mak-

ing vision-based navigation systems less expensive 

and physically smaller than ever before, enabling their 

use on low-cost small spacecraft such as CubeSats.  

Several new algorithms for vision-based measure-

ment processing have been developed for applications 

outside of aerospace engineering that are very  

promising in terms of their robustness and simplicity. 

For example, the “blobber” algorithm presented by 

Walker determines the center of brightness (COB) of 

a body, which for a convex object is close to its geo-

metric center (Walker and Spencer, 2012). The algo-

rithm allows useful information to be extracted from 

an image even under poor optical conditions, includ-

ing limited lighting and focus. Modeling and tracking 

algorithms can also be drawn from outside the  

aerospace field. The Learning Switching Dynamic 

Models for Object Tracking (Celeux et al., 2004)  

is an example of such a process. These new algorithms 

can be combined with traditional aerospace pose  

navigation algorithms, which require that the pattern 

of the object must be identifiable and known in the tar-

get object frame of reference (Haralick et al., 1989; 

Tweddle, 2010)  

 

1.1. Star tracking  

For small satellites to be viable as scientific and 

technological platforms, they must be capable of accu-

rate attitude determination. In other words, the satellite 

must be able to determine its orientation well enough 

to ensure mission success. The most direct way to ac-

complish that goal is via star trackers. However, tradi-

tional star trackers are large and contain light baffles 

that would exceed the limited volume of many small 

satellites, including CubeSats; miniature star trackers 

that can fit within a CubeSat structure are a fairly re-

cent development. For example, commercial devices 

have emerged that fit within the CubeSat form factor 

(Enright et al., 2010). Huffman (Huffman et al., 2006) 

presented a thorough survey of available star tracking 

algorithms, but they were not implemented in hard-

ware. Pong has presented an algorithm for using the 

camera from ExoplanetSat for star tracking (Pong et 

al., 2012).  

 

1.2. Contributions  

Clearly, advances in sensor hardware and pro-

cessing algorithms and technology have expanded the 

potential for imaging applications on small satellites. 

However, as important as these capabilities are, it is 

equally important that they perform as expected during 

their mission. Hardware and software must operate 

successfully during the device’s first and all subse-

quent uses on-orbit. Thus, simulation, software-in-the-

loop testing, and hardware-in-the-loop testing are crit-

ical for small satellites providers to prove the perfor-

mance of their devices prior to flight.  

This research presents a two-fold solution for these 

satellite developers. First, it demonstrates performance 

of a low-cost vision sensor that can be used both for 

proximity operations and star tracker-based attitude 

determination. This dual utility is valuable since it pro-

vides more functionality within the same mass, vol-

ume, and power costs of a single sensor. Secondly, 

procedures are presented to test the performance of 

this device in three pre-launch program stages: simu-

lation of images using provided camera parameters, 

software-in-the-loop testing, and hardware-in-the-

loop testing. Using the presented sensor as an exam-

ple, the simulation and testing procedures provide a 

methodology for verifying the capabilities of imaging 

sensors in a lower budget small satellite program. Al-

gorithms and test procedures will be presented first for 

proximity operations and then for star tracking. 

 

 Proximity Operations 

 

2.1. Algorithm  

To provide relative position information in the vi-

cinity of another, non-cooperative body, the imaging 

sensor employs the blobber algorithm, developed by 

Walker (Walker and Spencer, 2012). This algorithm 

acquires relative position information in a two-stage 

process. First, a unit vector to the second body is de-

termined by locating the center of brightness on the 

image plane. Then, using 2-D image coordinates and 

the camera geometry, a 3-D unit vector approximately 

directed toward the center of the body is determined in 

the imaging vehicle’s body-fixed reference frame.  
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The algorithm then estimates the range to the ob-

ject. This stage involves several steps. First, the major 

and minor axes of the blob are determined, as well as 

the ratio of the lengths of these axes, called the axis 

ratio. Next, estimates for the maximum and minimum 

projected areas are found using numerical methods. 

The projected area, known as A/A0, is the ratio of the 

area viewed on the two-dimensional image plane to 

the minimum such area. For example, A0 for a 3U Cu-

beSat would be the area of its smallest face, 10 cm2. A 

distribution of possible projected areas versus the axis 

ratio is found using randomly generated orientations 

of the target object. An example distribution for a 3U 

CubeSat is given in Figure 1. 

A maximum and minimum area curve is deter-

mined from this distribution of points, from which an 

estimated range can be found via Equation 1 (Walker 

and Spencer, 2012). 

 

𝜌𝑚𝑒𝑎𝑛 = 𝑓√
𝐴𝑚𝑒𝑎𝑛

𝑁𝑏𝑙𝑜𝑏 ∙ 𝑝2
                       (1) 

 

In this equation, f is focal length of the camera, 

Amean is the average projected area for a given ratio of 

axes, Nblob is number of pixels the imaged object illu-

minates, and p2 is the physical area of one pixel on the 

sensor. 

 

2.2. Simulation  

The first step in performing end-to-end testing of 

the proximity operations sensor is the generation of 

simulated image measurements. The primary purpose 

of these simulated images is for use in the later soft-

ware-in-the-loop testing. However, they are also im-

portant for algorithm validation. The accuracy and 

utility of the software-in-the-loop tests can be deter-

mined later by comparing the simulated images to ac-

tual images taken with the hardware.  

 

2.2.1. Types of reflectance  

Reflected light from an object is broken into three 

categories: ambient, diffuse, and specular (Lekner, 

1987). Ambient reflected light is due to a light source 

that is sufficiently scattered so that its direction of 

origin is unknown. An example of this type of reflec-

tion is sunlight on a cloudy day. The surroundings are 

clearly being illuminated, but the clouds scatter the  

 

Figure 1.Example of projected area distribution for a 3U CubeSat. 
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sunlight so that no shadows exist from which to deter-

mine the sun’s direction. The next type of reflection is 

diffuse, or Lambertian. Diffuse reflection results from 

a directional light source striking a matte, or rough, 

surface. Diffuse reflection is scattered in all directions, 

with a greater reflected intensity the smaller the angle 

is between the light source and the normal direction of 

the surface. The last type of reflection is specular. 

Specular reflection results in a “glossy” appearance 

and follows Snell’s law: the angle of incidence equals 

the angle of reflection. A sketch of the difference be-

tween Lambertian and specular reflection is given in 

Figure 2. 

 

2.2.2. Primitive shapes  

The first step in the generation of simulated images 

is the definition of primitive shapes. These building 

blocks are combined to form the optical target as well 

as the imaging satellite. The shapes that were selected 

for this step were cuboid, sphere, and cylinder. A gen-

eration function creates a list of points making up the 

surface of the shape given the dimensions, surface res-

olution, relative position, and relative orientation. The 

surface resolution is defined as the number of points 

per unit surface area of the primitive shape. Each of 

these points is then assigned a normal direction for use 

in calculating the interaction of the body with simu-

lated light sources. The point list combined with the 

associated normal directions is called the point cloud.  

The first primitive shape selected is the rectangular 

cuboid, referred to hereafter as “cuboid.” Cuboids are 

defined as convex polyhedra bounded by six rectangu-

lar faces. This shape is common in satellite design, 

forming the basis of components like solar panels or a 

CubeSat. Since the cuboid faces consist of rectangles, 

the parameter of interest for generating the surface is 

the pixel pitch, or number of pixels per unit length. 

That value is determined from the surface resolution 

by taking its square root. The edge points of the cuboid 

are evenly distributed on each of the 12 edges with a 

distance between them equal to the pixel pitch. These 

edges are assigned a normal direction of zero so that 

they reflect only ambient radiation. The absence of 

Lambertian or specular radiation represents the dis-

continuity between the normal directions of each face. 

Next, the points on each of the eight faces are gener-

ated. One coordinate direction is held constant and the 

points are evenly distributed, separated in the other 

two coordinate directions by a distance equal to the 

pixel pitch. Each face is assigned a normal of 1 or −1 

in the direction that was held constant during the loop, 

depending on location (left/right, top/bottom, or 

front/back). Finally, the point cloud locations and nor-

mal directions are rotated and translated based on the 

relative position and translation information.  

The second primitive shape is a sphere. The distri-

bution of points evenly across a sphere is not as trivial 

as for a cuboid. Deserno (Deserno, 2004) presents two 

potential remedies for this unequal distribution. The 

 

Figure 2.Specular versus Lambertian reflection (Schubert, 2006). 
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first is to randomly distribute a given number of points 

over the surface area. The second is to choose circles 

of latitude dθ and distribute on them points along dφ, 

such that the area per point dθdφ remains approxi-

mately constant. The second is the strategy that was 

implemented. While the point distribution algorithm is 

more complicated, the normal direction calculation for 

each point is simpler: it is the unit vector to the point’s 

location relative to the geometric center. Similarly to 

the cuboid process, the point cloud locations and nor-

mal directions are then rotated and translated.  

The last primitive shape is a cylinder. Generating 

the point cloud for the cylinder uses a combination of 

the cuboid and sphere processes. The points for the top 

and bottom of the cylinder follow from a two-dimen-

sional version of the algorithm from Deserno (2004). 

The normal directions are simply positive-and nega-

tive-z unit vectors. The body points of the cylinder are 

generated by “laying out” the face flat and creating a 

grid of points on that face. The normal directions  

for the face are found using the unit vectors to each 

point similarly to the sphere. Finally, the points are  

rotated and translated. Figure 3 shows all three  

primitive images. 

 

2.2.3. Satellite configuration file  

Once the algorithms have been developed to create 

the point clouds for the various primitive shapes, a 

method is needed to combine them into more complex 

shapes, as well as describe their motion both relative 

to space and relative to the other primitive shapes that 

comprise the object. This step is accomplished via a 

configuration file. The text file consists of three parts. 

The first two lines describe the camera geometry, in-

cluding resolution, pixel size, and other parameters, as 

well as the camera’s initial location in three dimen-

sional space. The first line also specifies the direction 

of the light source. The third line describes the cam-

era’s motion, if any, in inertial space. The next part 

describes the motion of the imaging satellite overall. 

This information includes the number of primitive 

shapes that describe the body, the body’s initial loca-

tion and the subsequent motion of the body. Finally, 

the last part describes the primitive shapes themselves: 

their shapes, sizes, optical characteristics and relative 

position and motion to the camera-centered frame. 

There can be any number of components, indicated by 

a parameter in the body section. 

 

2.2.4. Simulated images generation  

Once the configuration, motion, and optical char-

acteristics of the satellite have been specified, a series 

of simulated images is generated. These images can be 

combined into a video to ascertain data about the ve-

locity of the object. First, all of the pertinent infor-

mation is extracted from the configuration file. These 

parameters determine the number of frames of the se-

ries that must be generated. For each frame, the rela-

tive position of the target object to the camera as well 

as its visual parameters are passed into an image gen-

eration subfunction. This subfunction determines 

which points on the satellite are visible to the camera, 

eliminating points that are obscured either by another 

part of the same primitive shape or by another shape 

in the satellite. For each of these visible points, the 

reflected light is determined by the point’s normal di-

rection, the direction to the light source, and the direc-

tion to the camera. Each material reflects light in a ra-

tio of ambient, Lambertian, and specular reflection 

given by a coefficients ka, kl, and ks. The other neces-

sary parameters are Ia the amount of ambient light near 

the body, which is an estimate and can be ignored if 

all light sources are directional, and Ii the intensity of 

the of the light source. The vector N is the normal 

 

Figure 3. Examples of generated images (left: cylinder, center: 

sphere, right: cuboid). 
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direction for a point on the surface of the object as gen-

erated in section 2.2.2. The unit vector L points to the 

light source and unit vector V points to the observer, 

in this case the simulated camera. Both of these vec-

tors originate at the point on the surface. The vector R 

is an intermediate vector necessary for the calculation 

of specular reflection. The dot product of R with V is 

defined by Equation 2. These vectors are shown in Fig-

ure 4. The specular exponent n relates to the apparent 

smoothness of the object. These parameters are com-

bined to give the illumination of a point by the Equa-

tion 3. 

 

R ∙ V=2(N ∙ V)(N ∙ L) − (V ∙ L)              (2) 

 

𝐼 = 𝐼𝑎𝑘𝑎 + 𝐼𝑖(𝑘𝑙(N ∙ L)+𝑘𝑠(R ∙ V)𝑛)          (3) 

 

2.3. Software-in-the-loop testing  

To test the proximity operations algorithm, a soft-

ware-in-the-loop test is used. Images are simulated us-

ing given parameters and then these simulated images 

are passed through the algorithm. Once that is com-

pleted, the results are compared to a truth value.  

The satellite and camera parameters are applica-

tion specific, but to make the test representative of typ-

ical low-cost small satellite applications, the following 

parameters were used. For the satellite, a 3U CubeSat 

sized object was generated, having dimensions of 10 

by 10 by 30 centimeters. For the camera, the parame-

ters for a real sensor that is planned for use on an up-

coming CubeSat mission are used, given in Table 1. 

It is important when selecting hardware to consider 

the maximum and minimum resolvable range. These 

values are based on the pixel size µ, focal length f, and 

characteristic dimension of the object h. For this sen-

sor hardware and target object, the theoretical resolv-

able range R is between 8.4 cm and 64 m. These values 

are the distances at which the object fills the entire 

frame and at which the object covers four square pix-

els. Resolvable ranges can be found by constructing 

similar triangles, one using the focal length and image 

sensor and one using the range and object size (Figure 

5). The thresholds on either extreme can be adjusted 

based on sensing requirements and application. 

Once the hardware was specified, a path was cho-

sen for the motion of the satellite. The path was de-

signed to extend over various ranges as well as orien-

tations of the satellite. These parameters are given in 

Table 2. 

A simulated movie is then generated from the cam-

era and satellite parameters as well as the specified rel-

ative motion. The movie was then passed into the 

proximity operations algorithm, which found the rela-

tive position of the body in each frame. The simulated 

movie is frame-rate independent. In some tests, a 

 

Figure 4. Reflection model vectors. 

Table 1. Simulated Camera Parameters 

Resolution (px) 1024×768 

Pixel size (µm) 4.65×4.65 

Focal Length (mm) 6 

 

 

Figure 5. Resolvable range calculation. 

Table 2. Satellite Motion Parameters 

State x y z 

Velocity (m·frame−1) 0.02 0.02 0.4 

Rotation (deg·frame−1) 5 5 5 
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specified frame rate could be necessary. For example, 

velocity may need to be estimated, as well as position. 

In that case, the velocity and rotation parameters 

should be calculated so that those values agree with 

the desired relative motion and frame rate of the cam-

era. These results are compared with the true motion 

in Figure 6.  

The results show that the average tracking of the 

satellite is quite good. There is some variation around 

frames 16 through 27, which can be explained by the 

changing orientation of the target satellite. The blob-

ber algorithm determines an estimate for the range 

based on the projected area and the ratio of axes. As 

can be seen in Figure 1, multiple projected ranges can 

be associated with a given axis ratio, hence the error. 

Additionally, a greater error exists in the z-direction, 

since that is the direction of the camera boresight. 

Thus, an error in the range will show up most preva-

lently in the z-axis instead of the x-or y-axis. Never-

theless, the algorithm tracks the satellite quite well, 

considering the limited image quality and knowledge 

of the object being tracked, especially at the shorter 

ranges.  

To test the blobber algorithm more rigorously, a 

second software-in-the-loop test was performed. For 

this test, 11 ranges were tested under 9 random orien-

tations. To more accurately determine the performance 

of the algorithm, the ranges were distributed logarith-

mically from 1 m to 100 m. In total, 99 different ori-

entations were tested. The results are given in Figure 

7. The second test reinforces the results of the first. The 

algorithm performs well at shorter ranges, but begins 

to underestimate the range starting at around 10 m. The 

average results for the orientations at each range are 

given Table 3. 

This analysis backs up the general trend in Figures 

6 and 7. The blobber algorithm performance degrades 

as the range increases. A likely explanation for this 

phenomenon is that the smaller the object becomes in 

the image plane, the fewer pixels it illuminates. That, 

in turn, worsens the axis ratio estimate upon which the 

projected area and range estimates are based. From a 

higher-level perspective, this feedback is valuable to 

satellite developers before launch and highlights the 

utility of simulation and software-in-the-loop testing. 

 

Figure 6. Software-in-the-loop results. 
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Figure 7. True range (blue) compared with maximum (red) and minimum (green) estimated ranges. 

 

 

Table 3. Algorithm Performance by True Range 

True range (m) Avg est range (m) Avg abs error (m) Avg rel error (%) True ranges within min-max (%) 

1.000 1.392 0.3921 39.21 0 

1.585 1.738 0.1840 11.61 77.78 

2.512 2.537 0.1961 7.808 88.89 

3.981 3.837 0.3991 10.03 77.78 

6.310 5.951 0.4992 7.912 88.89 

10.00 8.685 1.345 13.45 44.44 

15.85 13.11 2.734 17.25 22.22 

25.12 19.99 5.131 20.43 33.33 

39.81 30.15 9.657 24.26 11.11 

63.10 42.40 20.69 32.79 0 

100.0 50.50 49.50 49.50 0 
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2.4. Hardware-in-the-loop validation  

In order to perform a hardware-in-the-loop valida-

tion for the proximity operations algorithm, the fol-

lowing process was used. First, a 3U CubeSat analog 

was constructed with the dimensions of 10x10x30 cm. 

Next, a camera was analyzed using the process pre-

sented by Bouguet (2013) to determine the exact focal 

length. This value was combined with the camera ge-

ometry to yield the following key parameters given in 

Table 4. 

Next, a series of images was taken of the satellite 

analog. To determine the performance of the blobber 

algorithm at different orientations, all of the images 

were taken with the analog at a distance of one meter. 

These images were taken under different lighting con-

ditions and different orientations. The images were 

then processed using the blobber algorithm described 

in section 2.1 after undergoing various image pro-

cesses. First, the images were inverted, since the ana-

log was black on a light background as opposed to the 

simulated images, which were light on a dark back-

ground.  

These images were then converted from red-green-

blue color to binary black-white using a thresholding 

parameter. If any of the color channels met or ex-

ceeded the threshold, the pixel was considered a 1; oth-

erwise, it became a 0. Since this camera used an 8-bit 

sensor, the maximum brightness value was 255 and the 

threshold parameters were chosen to be near the higher 

end of the range 0-255, to focus on the foreground ob-

ject. 

Figure 8 shows the range results for various thresh-

olding parameters. The error bars represent the maxi-

mum and minimum range generated by the blobber al-

gorithm. Overall, the hardware-in-the-loop provides 

reasonable verification of the blobber algorithm using 

physical measurements. The average residual is 8.14 

cm, or an error of 8.14%, for the best performing 

threshold of 230. In addition, the true range falls 

within the error bars for 75% of the images. In an effort 

to improve the image performance, the thresholded 

images were opened and closed. Opening an image is 

a processing technique in which the image is eroded 

and then dilated and is used to eliminate small fore-

ground objects. Closing is the inverse process, when 

an image is dilated and then eroded. This technique 

closes holes in foreground objects. A more detailed de-

scription of both processes can be found in Haralick’s 

work (Haralick and Shapiro, 1992). Opening and clos-

ing the image did not provide any improvement to the 

performance, and the results were very similar to Fig-

ure 8. The projected area is determined from the num-

ber of foreground pixels, and since a level of uncer-

tainly already exists relating the projected area to the 

axis ratio, the performance is not greatly improved or 

reduced by a process which more accurately accounts 

for the true number of foreground pixels. The overall 

result provides an on-the-ground verification of the 

blobber algorithm analogous to the demonstration of 

the star tracking algorithm described in section 3.4. 

 

 Star Tracking 

 

3.1. Algorithm  

The star tracking algorithm employed in this ex-

ample is known as the voting method and is described 

Table 4. Camera Parameters 

Resolution (px) 2048 × 1536 

Pixel size (µm) 2.9475 × 2.9475 

Focal Length (mm) 4.356 

 

 

Figure 8. Range results for various threshold parameters. 
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by Kolomenkin, et al. (2008). Each potential star pair 

is compared to an on-board catalog of star pairs and 

possible identities for each potential star pair are iden-

tified. When the list of star pairs for an image has been 

evaluated, the most frequently chosen catalog star is 

assigned to its respective candidate star in the image. 

The proposed angular distances as determined by the 

catalog are then compared to the actual distances, and 

if they match to within a given tolerance, those two 

identities receive a “vote.” At the end of the process, 

the identities with a high number of votes are 

confirmed. Their unit vectors in the inertial frame are 

then passed along with the sensor frame unit vectors to 

the attitude determination algorithm. That algorithm 

was the method outlined by Markley (1988), which 

finds the attitude via a singular value decomposition of 

a 3x3 matrix constructed from the vector representa-

tions in the observed and reference frames.  

The voting method was chosen because it is ex-

tremely robust to poor quality images that can produce 

measurement artifacts known as false stars. In tests by 

Kolomenkin et al. (2008), the voting method retained 

the correctly identified stars until the number of false 

stars was as much as three times the number of actual 

stars, and it accomplished this without restarting the 

algorithm. Also, the lower resolution performance of 

inexpensive imaging sensors does not significantly af-

fect the accuracy of the voting method. Using defocus-

ing and centroiding, the sensor attains subpixel accu-

racy. In terms of memory requirements, a catalog of 

star pairs used with the voting method is about the 

same as those for other star identification methods, 

with some other methods needing more memory for 

star triples or even grids of potential images. Consid-

ering these criteria of robustness, resolution, and 

memory requirements, the voting method was chosen 

for star tracking on small satellites. 

 

3.2. Simulation  

To verify functionality of the attitude determina-

tion capability of the same sensor, a simulation was 

conducted to demonstrate the operation of the star 

tracking algorithm. The setup for the analysis con-

sisted of picking a random attitude to simulate and 

generating the corresponding star field image that 

would be observed by the camera pointed in that atti-

tude. The attitude here is defined as orientation of the 

camera relative to the Earth-centered inertial frame. 

To select the attitude, three random angles were se-

lected between −180 degrees and 180 degrees. These 

angles were used in a 1-2-3 rotation sequence to gen-

erate an attitude direction cosine matrix. This attitude 

was combined with the camera parameters and a star 

catalog to create the simulated image. Further details 

on the simulation process can be found in McBryde 

(2012). This process was repeated a total of 200 times, 

resulting in a series of 200 randomly generated simu-

lated images. 

 

3.3. Software-in-the-loop testing  

These images were then processed by the star 

tracker software, which outputs an estimated attitude 

solution according to the algorithm specified in section 

3.1. The true and estimated attitudes were compared to 

find the accuracy of the star tracker measurement. The 

error about each axis was then calculated as shown in 

Eqs. 4, 5, 6, and 7. 

 

Θ = R𝑐𝑎𝑙𝑐
−1 R𝑎𝑐𝑡𝑢𝑎𝑙 = [

≈ 1 −𝜙𝑧 𝜙𝑦

𝜙𝑧 ≈ 1 −𝜙𝑥

−𝜙𝑦 𝜙𝑥 ≈ 1
]     (4) 

 

𝜖𝑥   =  90° − cos−1 𝜙𝑥                    (5) 

 

𝜖𝑦   =  90° − cos−1 𝜙𝑦                    (6) 

 

𝜖𝑧   =  90° − cos−1 𝜙𝑧                    (7) 

 

The attitude error between the estimated attitude 

and simulated true attitude was calculated for each 

axis for each of 200 randomly generated images. The 

algorithm was considered to have failed if the error 

was greater than 100 arcseconds for any of the three 

axes. Since the target accuracy for this system is arc-

minute level (single digit arcminutes), 100 arcseconds 

is on the low end of this range in order to account for 

real-world factors that might affect the accuracy. 

Given these conditions, the star tracking algorithm 

successfully found the correct simulated attitude 
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within an acceptable error 191 out of 200 times, for a 

reliability of 95.5%.  

Looking first at the failures, only twice out of 200 

times, or 1%, did the algorithm report an incorrect at-

titude for which it reported obtaining a confident 

match. The match confidence is determined by the 

value T, called the match threshold. The match thresh-

old is the maximum number of votes received by a star 

in the verification step of the voting method. If T ≤ 0, 

then no star received any votes, indicating a poor 

match. On orbit, this would be output as an error con-

dition and the attitude solution would not be used. 

Only two reported attitude solutions were incorrect de-

spite having T > 0. These cases could present a prob-

lem, since they would be reported by the algorithm as 

a correct result. After visual analysis of both failure 

cases, the simulated images have at least one star pair 

in very close proximity, which fooled the algorithm 

into thinking there was only one star and caused the 

failed identification. Further refinement of the star cat-

alog or algorithm could be used to counteract this case 

if necessary, but since it represents only 1% of the total 

test cases, the algorithm may be acceptable as is, de-

pending on the sensor requirements.  

For the 191 successful cases, the average perfor-

mance can be seen in Table 5. Theoretically, perfor-

mance should improve when more stars are observed. 

Figure 9 shows the error for each axis averaged over 

the number of stars observed. The image generation 

process is computationally intensive, but could be aug-

mented with additional computational power to run 

more than 200 cases for better statistical results. 

The cases where fewer stars are observed do have 

the highest errors for the x-and y-axes, and almost 

highest for the z-axis, but there appears to be no con-

sistent downward correlation as the number of stars 

observed is increased. This observation is verified by 

an root-sum-square analysis of the error across the 

three axes, shown in Figure 10. The phenomenon 

could be related to the star clustering error described 

in the failed identification cases. 

The graphs from Figures 9 and 10 highlight some 

interesting results. First, even though all physical error 

has been removed from the test, the errors in the three 

Table 5. Average Successful Case Performance 

Stars generated 11.4607 

Stars observed 10.1152 

T 8.6230 

ϵx (arcsec) 10.6237 

ϵy (arcsec) 7.7998 

ϵz (arcsec) 6.4789 

 

 

Figure 9. Error in each axis vs. number of stars observed. 

 

Figure 10. RSS error vs. number of stars observed. 
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axes are not zero. Looking through the process for po-

tential error sources, the only likely contributor is the 

centroiding algorithm. The algorithm uses a slightly 

defocused image and measurement centroiding to 

achieve subpixel accuracy in the estimate of each 

star’s location in the image. Despite achieving sub-

pixel accuracy, the centroiding function still has some 

error from the true location of the center of the star. 

Errors as small as 10 arcseconds should not concern 

most low-cost small satellite developers looking to add 

star tracking to their satellites unless their mission re-

quires more accuracy.  

Another noteworthy metric is the average number 

of stars viewed, which was about ten. Even for a 20 

degree FOV, this number is somewhat high and is the 

result of the brightness mask on the stars being set to 

magnitude 5.5. This choice was made to ensure that 

enough stars existed in each image for analysis. The 

purpose of the computer-generated images was not to 

assess the real world performance of the star tracker, 

given all of the ideal assumptions that were made. Ra-

ther, it was to verify the functionality of the algorithm. 

Further tests were conducted to determine physical 

hardware performance in the presence of additional 

measurement error sources. 

 

3.4. Hardware-in-the-loop validation  

To conduct hardware-in-the-loop night sky testing, 

an experimental setup was created that could be used 

outside the lab. The physical setup of the test is as fol-

lows. A Matrix Vision mvBlueFOX-M121G camera 

and Schneider Optics lens were fixed to a camera tri-

pod mount which was then attached to a high-quality 

tripod. It was important to make sure that the tripod 

was level, to enable the calculation of the true attitude. 

The tripod camera setup was taken to two different 

dark sky locations in Texas on two different nights. In 

addition to the Schneider Optics lens, two other lenses 

were used to take test images: the Edmund Optics 12 

mm lens and the Navitar 6 mm lens. These lenses have 

a wider field-of-view and can view more bright stars.  

The software setup was as follows. The camera 

was connected via a USB cable to a laptop running the 

mvImpact ACQUIRE software provided by Matrix 

Vision. The program used was called wxPropView 

and allowed the viewing of the camera output as well 

as saving the resulting image. In addition, a GPS re-

ceiver was used to determine the latitude and longitude 

of the location of the camera and the time of the image. 

This information was used to calculate the true attitude 

of the camera at the time of the image.  

The results of the night sky testing were promising, 

but incomplete. The best success was on a set of cali-

brated images taken with the Navitar 6 mm lens. This 

image was run through the star identification process. 

The stars were all correctly identified as compared to 

the listing of star names in the constellation. The next 

step was to calculate the attitude and then apply the 

transformation to the unit vectors in the inertial coor-

dinate frame. The resulting unit vectors should match 

the unit vectors derived from the image, which are 

given in the camera coordinate frame. When this pro-

cess was performed on the image set, the result was 

quite good for some of the images. Figure 11 shows 

the predicted and actual observed positions overlaid on 

top of each other. For two of the stars, the discrepancy 

is small enough that it cannot be seen on the graph. 

Table 6 shows the error for each identified star as well 

as its magnitude. The identification numbers reference 

the Yale Bright Star Catalog (YBSC). 

These results from the night sky testing show the 

viability of the star identification algorithm in a real-

world situation. Not every image in the two sets  

 

Figure 11. Predicted and candidate unit vectors using star iden-

tification results 
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returned an attitude solution, and the likely cause re-

sults from the calibration of the camera system. The 

calibration parameters vary from camera system to 

camera system, and even from environment to envi-

ronment. Further investigation will go into the cases 

without a solution to determine why a solution was not 

returned. In those cases, the algorithm indicated the 

lack of a solution. It is also important to note that the 

comparison for these tests was between the measured 

image of the star on the image and its projected loca-

tion based on the attitude solution. A true attitude in an 

Earth-centered inertial frame was not calculated; if it 

were, errors such as GPS accuracy, timing accuracy, 

and tripod alignment and calibration would all be im-

portant factors. Similarly to the proximity operations 

tests, these results provide a useful proof of concept, 

but also demonstrate the importance of proper hard-

ware calibration to obtain good results. 

 

 Conclusion 

 

The methodology presented in this research 

demonstrates an approach for small satellite designers 

to perform faithful and accurate tests of their visual 

navigation sensors before launch. Used either individ-

ually or as a whole, the simulation, software-in-the-

loop testing, and hardware-in-the-loop validation tech-

niques lower the risk assessment for low-cost small 

satellite missions. In addition, the process shows the 

viability of a dual-use sensor on these missions. This 

combination has the advantage of saving volume, 

mass, and power by combining multiple utilities into a 

single sensor on missions when all three resources are 

at a premium.  

4.1. Planned Demonstration on Satellites  

The visual navigation system outlined in this re-

search is in a unique position to be put to a practical 

test in space. The design is included on two separately 

developed student satellite missions. These 3U Cu-

beSat missions are known as Bevo-2 and ARMA-

DILLO (Atmospheric Measurement And Detection of 

sub-mILLimeter Objects), scheduled to fly by 2016. 

The parameters that were used in this study repre-

sented real sensors that are baselined for these mis-

sions to be used on-orbit. 

 

4.2. Future work  

There are still some remaining issues with obtain-

ing the best results from the night sky testing, but these 

can be resolved with further testing and refinement of 

the star identification algorithm. One potential issue is 

the differing focus requirements for star tracking, 

which must take images of stars at near infinity, and 

imaging, which usually focuses on nearby objects. 

Due to the small focal length of the camera used for 

the tests, “near infinity” in this case is on the order of 

a few meters, so it should not drastically affect the im-

aging capability of the camera to image both stars and 

other objects that are tens of meters away. However, 

spacecraft providers who would like the increased at-

titude determination accuracy that comes with a longer 

focal length would have to consider the resulting in-

crease in the minimum distance for proximity opera-

tions. On the proximity operations side, further work 

must be done in refining the hardware-in-the-¬loop 

validation. This work includes testing the camera at 

various ranges and the testing of different image pro-

cessing techniques to improve the accuracy of the 

ranges. 
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