News and Announcements

This section is intended for brief news items or announcements only. If appropriate, we will provide a link to a longer announcement or related article.


Please submit news items or announcements to editor@jossonline in a word file format.

January 2018

Hampton University Proton Therapy Institute Helps Virginia Students Prepare for Space Flight


Virginia CubeSat Constellation students in Hampton University Proton Therapy Institute Test Chamber. Left to right: James Flynn, ODU; John Noon, Virginia Tech; Ben Connelly, UVA; Anthony DeFilippis, Virginia Tech; David Khanan, UVA; Nathan Gaul, UVA; Michael Ford, UVA; William Cheng, UVA; and Patrick Bebermeyer, UVA.

The Hampton University Proton Therapy Institute (HUPTI) is working with the Virginia Space Grant Consortium (VSGC) to test components of student satellites bound for orbit. The Institute’s proton beam, which offers cutting edge cancer treatments, is being used to simulate the impact of radiation encountered in the space environment on space hardware developed by the students.
The Virginia CubeSat Constellation is a NASA and VSGC-funded mission that will place three very small satellites in orbit as a constellation from the International Space Station as part of the NASA Undergraduate Student Instrument program. The student-led mission is a Virginia Space Grant Consortium project and a joint effort among four member universities: University of Virginia (UVA), Virginia Tech (VT), Old Dominion University (ODU) and Hampton University (HU). More than 100 students across the universities have been working on the project.

Dr. Hovakim Nazaryan, Ph.D., right, Medical Physicist at the Hampton Proton Therapy Institute explains the irradiation set up to James Flynn (ODU) and Tony DeFilippis (Virginia Tech). Note: For this test, the jug of water was used to stop the proton beam.

The Constellation was selected for launch to the International Space Station in the third quarter of 2018 or early 2019 with orbital insertion to follow from the Station. Students must deliver their satellites to NASA for integration in July 2018. The ODU satellite, which has a drag brake to intentionally cause orbital decay, is expected to remain in orbit for up to four months. The other two satellites should orbit for up to two years. The satellites will communicate data to ground stations at VT, UVA, and ODU for subsequent analysis using an analytical tool being developed by HU.

The mission seeks to obtain measurements of the orbital decay of a constellation of satellites to develop a database of atmospheric drag and the variability of atmospheric properties. It will also evaluate and demonstrate a system to determine and communicate relative and absolute spacecraft position across an orbiting constellation.
See Press Release_HU Proton Therapy Institute to read more.

November 2017

Welcoming new Technical Area Editor (TAE) Streetman


Brett Streetman, Ph.D.

We are pleased to welcome Dr. Brett J. Streetman as a new Technical Area Editor (TAE) in the areas of Guidance, Navigation, and Control; Trajectory and Orbital Mechanics; Interplanetary Probes; and Formation Flying. Currently a Senior Member of the Technical Staff at Draper Laboratory, Dr. Streetman has research and project experience in areas including orbit dynamics of electrically charged spacecraft, analysis of the attitude control system for the International Space Stations, guidance navigation and control of planetary landers and hoppers, and guidance navigation and control of autonomous parafoils.

November 2017

Call for Payloads for Sept. 2018 Flight of the High Altitude Student Platform (HASP) Through NASA Balloon Program Office and Louisiana Space Grant Consortium

Applications submitted in response to the Call for Payloads (CFP) for the September 2018 flight of the High Altitude Student Platform (HASP) are due December 15, 2017.
HASP can support up to 12 student payloads (providing power, telemetry and commanding) during a flight to an altitude of 122,000 feet for up to 20 hours. The NASA Balloon Program Office and Louisiana Space Grant Consortium anticipate flying HASP at least through 2018. There is no cost for launch and flight operations. Student teams will need to raise their own funds to support the development of their payload and, if necessary, for travel to Palestine, TX for HASP integration and Ft. Sumner, NM for flight operations.
Details about previous HASP flights and the student payloads flown can be found on the “Flight Information” page of the HASP website at <>.
Details on the payload constraints and interface with HASP as well as online access to the CFP materials can be found on the “Participant Info” page of the HASP website at <>.
Selections will be announced by mid-January 2018.
If you have any questions about the application materials or HASP, feel free to contact

November 2017

CubeSat Mission Applications Being Accepted for KiboCUBE Third Round

The United Nations Office for Outer Space Affairs (UNOOSA) and the Japan Aerospace Exploration Agency (JAXA) are pleased to announce the third round of the United Nations/Japan Cooperation Programme on CubeSat Deployment from the International Space Station (ISS) Japanese Experiment Module (Kibo) “KiboCUBE.”
If your institution is interested in applying, please visit the dedicated KiboCUBE page on our web site at:
Please send the fully completed application documents comprising of a CubeSat Mission Application as well as a letter of endorsement from the head of the applying entity to by March 31, 2018.

October 2017

Welcome New JoSS Technical Area Editors (TAEs)


Chantal Cappelletti, Ph.D.

Associate Professor and Member of the International Academy of Astronautics, Chantal Cappelletti, Ph.D. joins us from the University of Brasilia, where she is actively involved in microsatellite design, manufacturing, and launching; biomedical research in space; and space debris. Author of more than 30 publications, she has also led six satellite projects from Italy, including the UNISAT program, and from Brazil (SERPENS). Prof. Cappelletti was the PI for two missions concerning cancer cell behavior in space and ASI delegate at IADC. With the IAA, she chaired the two IAA Latin American CubeSat Workshops; co-chaired the two IAA University Satellite Missions Conferences in Rome; chairs the Biomedical Research in Space group; and is a member of both Applications of Micro-Satellites and CubeSats to Planetary Missions and Definition and Requirements of Small Satellites groups.

Mengu Cho, Ph.D.

Prof. Mengu Cho, Ph.D. received B.E. and M.E. degrees from the Department of Aeronautics, University of Tokyo, Tokyo, Japan, in 1985 and 1987, respectively, and a Ph.D. degree from the Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA, in 1992. After working at Kobe University in Japan and International Space University in France, he moved to Kyushu Institute of Technology (KYUTECH) in 1996. Since 2004, he has been a Professor and also the Director of the Laboratory of Spacecraft Environment Interaction Engineering (LaSEINE) of KYUTECH, and since 2014, he has been a visiting professor of Nanyang Technological University.
His research interest includes spacecraft environmental interaction. He has authored or co-authored more than 140 papers in peer reviewed journals. He served as a project lead of a standardization project for ISO-19683, “Space systems — Design qualification and acceptance tests of small spacecraft and units” that was confirmed in 2017. He supervised the KYUTECH satellite projects that launched and operated a 7kg nano-satellite and a 12kg nanosatellite successfully in 2012 and 2016. In 2017, he launched five 1U CubeSat constellations from ISS. He organized various international conferences, including International Workshop on Lean Satellite Standardization. He is a member of IAA, IEEE, AIAA, JSAS, and IEEJ, and was awarded the Space Development and Utilization Award by Minister of Economy, Trade and Industry, Japan.

Kamran Turkoglu, Ph.D.

Kamran Turkoglu, Ph.D. is an Assistant Professor in the Department of Aerospace Engineering, at San Jose State University (SJSU), CA USA. His current research focus is on nonlinear systems, consensus problems in multi-agent systems, optimization, real-time optimal guidance strategies, classical control theory, flight control systems, autonomous systems (including unmanned aircraft, aerial vehicles, self-driving cars and systems), battery control systems and time-delayed systems. Prof. Turkoglu received a BSc degree in Aerospace Engineering and a double major BSc degree in Aeronautical Engineering from Istanbul Technical University, Turkey in 2005 and 2006, respectively. He received his MSc degree in Aerospace & Aeronautical Engineering from Istanbul Technical University, Turkey in 2007 and a PhD degree in Control Science & Aerospace Engineering from University of Minnesota, USA in 2012. He is the director of Flight Control Systems and UAV Laboratory (FCS Lab) and Control Science and Dynamical System Laboratory (CSDy Lab), located in the Charles W. Davidson College of Engineering, Department of Aerospace Engineering at SJSU. He is also a member of AIAA, IEEE, IEEE Control Systems Society, ASME and SIAM.

August 2017

An Indian “Smart Village” Youth Team Builds a CubeSat


Prof. Solomon Darwin, Executive Director, Garwood Center for Corporate Innovation, UC-Berkeley

Through a series of meetings in 2016-2017, the concept of a “Village in Space” was advanced among Prof. Solomon Darwin, Executive Director, Garwood Center for Corporate Innovation (UC, Berkeley, HAAS School of Business), Greg Schmidt (NASA Ames Research Center), Joseph Minafra (NASA contractor Wyle/KBR), Prof. Bob Twiggs (Morehead State University), and JoSS (Dr. Adarsh Deepak, Managing Editor (ME) and Ravi Deepak, Assistant ME). The idea, as proposed by Ravi, was that under expert mentorship, village youth would build a small satellite, such as a CubeSat, that could be launched into space during a space flight, thereby achieving the distinction of being the “first village in space.”
The mechanism for accomplishing this was found in the Garwood Center’s ongoing efforts to prototype a “Smart Village” in collaboration with the Government of India; through this project, in 2016, over 22 technology firms from around the world participated in prototyping a “smart” scalable village (Mori village being the first) to serve as a model for rest of the 650,000 Indian villages in India. Open innovation methods and strategies were employed to connect the villagers with technology firms such as Google, IBM, Qualcomm, Ericsson, Cisco, Microsoft, Tyco, and others. The work continued in Mori in 2017 for the building of a CubeSat by some of the village’s youngest members.
The “Open Innovation Forum – India 2017” will acknowledge this achievement on August 31 on the KL University campus, Vijayawada, Andhra Pradesh, near the Mori village, with the participation of Prof. Darwin, Mr. Schmidt, and Mr. Minafra. The Forum will be chaired by Hon. Chandrababu Naidu, Chief Minister, Andhra Pradesh.
In a commensurate gesture of support, the JoSS team (including Taksha Institute,, an independent US not-for-profit education and research organization founded in 1976) is pleased to announce the co-sponsorship with Prof. Darwin of one of the two youths who built the CubeSat to visit the US for the August 2018 Small Satellite Conference at USU, Logan UT. Representing the JoSS team, Pat Deepak (JoSS Education Outreach Cordinator) will travel to Mori Village during the Innovation Forum to meet the girl-boy team that built the CubeSat.

July 2017

June 2017 DPSS17 Conference: Collaborating with Private Space Industry for Scientific Research

At the June 3-4, 2017 Dawn of Private Space Science (DPSS17) Conference co-organized at Columbia University, New York City, by Drs. Szabi and Zsuzsa Marka and Dr. Mark Jackson, a wide range of students, scientists, business representative, and educators gathered to share thoughts about conducting scientific research in collaboration with the private space industry, including remarks on the use of small satellites to do so. Dr. Erika Wagner of Blue Origin, for example, spoke on opportunities (including smallsat opportunities) for space science in microgravity and the ‘ignorosphere’ with the private space industry. As a co-sponsor, the Journal of Small Satellites (JoSS) was represented at the event by Dr. Adarsh and Pat Deepak.

Szabolcs (“Szabi”) Marka, Ph.D.

Zsuzsana (“Zsuzsa”) Marka, Ph.D.

Mark Jackson, Ph.D.














The DPSS17 “opened the conversation between multiple stakeholders interested in the future of science in space,” says Dr. Szabolcs Marka, a professor of physics at Columbia and president of the Science Partnership Fund (SPF), the nonprofit that organized DPSS17 in partnership with The Planetary Society.
See for more information about DPSS17.


July 2017

The 2017 Eclipse Experiments

Several thousand eclipse research teams worldwide plan to take photographs or videos of the August 21, 2017 solar eclipse during its various phases ranging from partial to totality — from ground, airborne, or space platforms, including small-satellites.* While most of the photos are likely to be “cosmetic” photos, others taken by the researchers are likely to be “technical” photos that provide the absolute intensity of the direct or scattered radiation, with or without the use of multi-spectral and/or polarized filters.
Two STC-JoSS Eclipse Teams (consisting of Drs. Adarsh Deepak, Pi-Huan Wang, and Mark Schoeberl, along with Ravi Deepak) plan to conduct the 2nd Solar Aureole Photographic Eclipse Experiment (SAPEX2) during the pre-, during-, post- phases of the Total Solar Eclipse at two locations: Jackson Hole, Wyoming and Albany, Oregon (Schoeberl). The rationale for choosing these locations was the likelihood of a cloud–free sky on the eclipse date. Jackson Hole is in the lee of the Teton mountain range at an elevation of 6300 feet above sea level; at that location, the period of totality will last two minutes, 19.3 seconds, beginning at about 11:35am MDT. One Team member (AD) vividly recalls conducting the first SAPEX1 as part of the University of Florida team (under supervision of the late Professor Alex E.S. Green) during the total solar eclipse of March 7, 1970, during which the team could not out-race in their cars the clouds that started forming over Gainesville just before the eclipse start, and had to settle for setting-up their experimental equipment in a farmer’s field in Georgia.

SAPEX Equipment (from

The SAPEX is relatively simple experiment that involves the use of a camera (normally available globally) and a blocker (with or without a Neutral Density filter of ~10-4) kept at 24 inches away to block the camera lens from the sun’s direct rays. This photographic film camera is interchangeable with a smart-phone or iPhone camera, such has been done in the iPhotometer, developed and patented by STC (Dr. Mark Schoeberl, STC Chief Scientist). It is recommended that the SAPEX be used as a part of the STEM program at the high school level upwards.
The goal of SAPEX is to determine the rate of variation of scattered radiation (at different spectral bands) as a function of the angular distances away (1)

Note that the isophotes (equal-intensity contours) of radiation around the solar disk provide unique fingerprints of atmospheric aerosols in the sky. (from

from the sun’s center during non-totality; and (2) within the dark side of the moon during totality. In the first case, the angular rate of degradation of the scattered radiation from solar center is a relatively accurate method of determining the atmospheric aerosol size-distribution. In the second case, the angular variation of radiation on the dark-side of the moon during totality is the only way to measure the presence of multiple scattering (MS) in order to make the MS corrections to obtain the true optical depth of the atmospheric aerosols at that location.
For those around the globe who will only be able to see the partial or annular eclipse, to calculate the radiation during the partial or annular phases of the Solar Eclipse, see the following basic paper published as a NASA Text in 1974: Deepak, A., and J.E. Merrill, Spectral Irradiance Curve Calculations for Any Type of Solar Eclipse, NASA TM X-64842 (1974).
Any JoSS readers who are engaged in an Eclipse17 experiment and wish to connect for information exchange with the JoSS Eclipse Team, please do so via email at or phone at 757-766-7990.
*[As a reference, the following website of NASA Total Solar Eclipse Interactive Map, Aug 21, 2017, is an excellent resource for determining the eclipse characteristics by pointing their cursor at any location along the eclipse corridor within the USA:]

May 2017

New Technical Area Editor (TAE) On Board

JoSS welcomes Astrogator John Carrico to its corps of Editors, with expertise in many of our topic areas.
Among his current professional responsibilities, he performs due diligence of potential investments and develops future aerospace business strategies. He has worked on flight dynamics mission analysis, operations, development, and systems integration, and has supported several operational Earth and Lunar spacecraft missions. He has designed and written trajectory design algorithms and software used for mission analysis and spacecraft operations, and has given courses worldwide on mission planning, trajectory design, manuever planning, and mission operations. Carrico also has experience in geospatial intelligence systems, and has performed reearch and development in the chemical monitoring and detection field.

May 2017

2017 Satellite Innovation Symposium – Oct. 2-3

With a focus that is unique among satellite industry events, the Satellite Innovation Symposium looks broadly upon innovations affecting the satellite communications market. Read more information about the players and organizations attending this unique networking opportunity by clicking here.


October 2016

New Technical Area Editors (TAEs) On Board

We have several new experts among our prestigious corps of Technical Area Editors (TAEs) at JoSS!

Cahoy-Clear Cropped and ResizedKerri Cahoy, Ph.D., Boeing Assistant Professor of Aeronautics and Astronautics at MIT, joined us earlier this year. After receiving her M.S. (2002) and Ph.D. (2008) in Electrical Engineering from Stanford University, Dr. Cahoy worked on the Mars Global Surveyor Radio Science Team, and then as a Senior Payload Engineer at Space Systems Loral, a NASA Postdoctoral fellow at NASA Ames, and a research scientist on GRAIL (Gravity Recovery and Interior Laboratory) at NASA Goddard. She received a 2013 AFOSR Young Investigator grant to investigate the sensitivity of communication satellite components to space weather, and a NASA New Investigator Program in Earth Science grant in 2014 to enable atmospheric data retrieval from nanosatellite sensors. She is excited to share her expertise with JoSS constituents who submit articles in the technical areas of Payload/Science/-Missions; Electrical Power Systems (EPS); Tracking, Telemetry, and Communications (TT&C); and Command and Data Handling (C&DH).
patterson-resized-and-adjustedJoSS also recently welcomed Pat Patterson, Ph.D., Director of Advanced Concepts for Space Dynamics Laboratory, as a TAE with expertise in the areas of: CONOPS/Systems; Formation Flying; Payloads/Science/Missions; and Integration and Testing.
Dr. Patterson received his M.S. (1990) in Spacecraft Controls Systems and a Ph.D. (2005) in Space Systems Engineering from Utah State University. He is currently the Director of the Advanced Concepts Division within Utah State University’s Space Dynamics Laboratory (USU/SDL), and is the Chairman of the annual American Institute of Aeronautics and Astronautics/USU Conference on Small Satellites. Other roles include membership on the Technical Committee for the European Space Agency’s 4S Symposium, and the Scientific Program Committee for the International Academy of Astronautics Symposium on Small Satellites for Earth Observation. Dr. Patterson also serves as an Industrial Advisory Committee member for USU’s Electrical and Computer Engineering department.


October 2016

2017 SmallSat Symposium is Open for Registration!

admin-ajaxThe SmallSat Symposium 2017 (February 6-8, Mountain View, Silicon Valley, CA) aims to unlock the business aspects, technologies and the financial and legal acumen that comprise the foundation of today’s rapid growth in the small satellite market. A broad range of thought-provoking panels and speakers representing visionary ideas and years of business experience are brought together once again. Following a day of workshops, the two-day conference will provide opportunities to network with prominent small satellite professionals, learn in sessions from executives and leaders who are changing the industry, and understand what it takes to participate in the next stages of growth.
Early bird pricing is now available; read more about the program and register at !

May 2016

MIT Aeronautics and Astronautics (AeroAstro) Student Team Places Second in NASA’s CubeQuest Challenge


MIT's KitCube GT-2 Team

MIT’s KitCube GT-2 Team. Back: Scarlett Koller, Angie Crews, Rachel Weinberg, Johannes Norheim, Maxim Khatsenko. Front: Kate Cantu, Max Yates. Photo: Rachel Weinberg.

JoSS is pleased to announce that MIT’s KitCube satellite design project has placed second in G-2, the second ground tournament of NASA’s CubeQuest Challenge. The CubeSat Challenge offers a total of over $5 million in prizes to teams that can develop CubeSats that can operate in deep space or lunar orbit, and the top three competitors in the final ground tournament will win a spot on the Space Launch System’s Exploration Mission 1 launch, currently scheduled for 2018. Two ground tournaments remain; the next competition, GT-3, takes place in August 2016.
KitCube’s design features novel green monopropellant propulsion technology and a laser communications payload. With these features, KitCube will be competitive for the lunar derby prize (achieved by successfully entering lunar orbit), as well as the best burst data rate prize. The green monopropellant, AF-M315E, was developed by AFRL, and is a less toxic fuel with a relatively high specific impulse. Meanwhile, the laser communications payload is expected to achieve a data rate of >1.5 Mbps over a 30-minute interval from lunar orbit.
KitCube’s student team is composed of a mix of undergraduate and graduate students at MIT, currently with over 45 active team members. Since GT-1, KitCube has also teamed up with Project Selene, a team of high school students from Pasadena, CA. Science and Technology Corp. (STC), the sponsor of JoSS, is one of KitCube’s sponsors.


February 2016

MIT Aeronautics and Astronautics (AeroAstro) Student Team is Top Contender in NASA’s CubeQuest Challenge

KitCube is a 6U CubeSat that will demonstrate new communications and propulsion technology, led by students and researchers at the Massachusetts Institute of Technology, in collaboration with industry and academic partners. KitCube is competing in the NASA CubeQuest Lunar Derby Challenge for a chance to win a launch opportunity on Exploration Mission-1 (EM-1) on the Space Launch System (SLS). KitCube took 2nd place in the first Ground Tournament (GT-1), and has since partnered with Project Selene, a team of high school students from Pasadena, California, that competed in GT-1.
KitCube is designed to achieve an expected data rate of >1.5 Mbps over a 30-minute interval from lunar orbit. KitCube also serves as a technology demonstration for future miniaturized laser communications payloads, agile, high delta-V propulsion capabilities for CubeSats, and CubeSat missions to lunar orbit. The mission trajectory to achieve lunar orbit is a low energy, bi-elliptic transfer that uses multi-body gravitational effects of the Sun, Earth and Moon to reduce the velocity of KitCube by flying out to 1.7 million kilometers from the Earth, spending several weeks at the external weak stability boundary (WSB), and then falling back toward the Moon to achieve lunar orbit with reduced delta-v requirements. The propulsion system for KitCube uses a green monopropellant, AF-M315E, as a more stable, less-toxic fuel that still has a relatively high specific impulse of 220 s. Thrust will be provided by four 0.5 N thrusters. At the current time, a conservative duty cycle has been assumed for the thrusters of 30 seconds on, 5 minutes off.
KitCube has two separate communications systems, one radio frequency (RF) communications, and one free space optical (lasercom). An X-band radio, paired with the Deep Space Network (DSN), will be the primary operational communications system. KitCube will also have a backup custom, small-form factor UHF radio. The use of an optical communication system drives the need for very fine pointing and control of the spacecraft. KitCube’s attitude determination sensors include two orthogonal star trackers, six sun sensors and an inertial measurement unit (IMU). For attitude control, KitCube will use three reaction wheels, and the four thrusters will be canted towards the center along the y-axis by 2° to enable wheel desaturation and thrust vectoring. The command and data handling hardware will consist of a custom motherboard and three custom interface boards for ADCS, Communications, and Propulsion. All interface boards include Power Distribution Units (PDU’s) to provide power and fault management to the components. Primary power for KitCube will be provided by a deployable two-sided 6U solar panel and body mounted panels on all sides, providing a nominal 40W of power. Secondary power will be provided by three 30 Whr batteries that will provide a nominal power capacity of 90 Whr.
The KitCube team is participating in the second NASA ground tournament, GT-2, in March 2016, and Science and Technology Corporation (STC), the sponsor of JoSS, is one of their sponsors. To see the related crowdfunding website, see

February 2016

Announcing The SmallSat Symposium: The Small Satellite Business & Finance Show – February 23-24, 2016 – Silicon Valley, CA US

Hosted by Satnews Publishers, the SmallSat Symposium presents a two-day program of panel speakers and keynote addresses on the technologies, the business aspects, and the financial and legal acumen that comprise the foundation of today’s rapid growth in the small satellite market. A broad range of thought-provoking panels and speakers representing visionary ideas and years of business experience are brought together as never before.
See more details and register for this unique opportunity to gain forward-thinking business and financial perspectives on the small satellite market at!

September 2015

KiboCUBE Announced by UNOOSA and JAXA


The UN Office for Outer Space Affairs (UNOOSA) and JAXA recently announced the joint initiative “KiboCUBE,” to offer educational and research institutions in developing countries the opportunity to deploy CubeSats from the ISS. Applications may be submitted for this opportunity until March 31, 2016. See more, in the announcement at KiboCUBE Announcement or the press release at KiboCUBE Press Release.

June 2015

Dr. Glenn Lightsey Joins JoSS Board of Editors


E. Glenn Lightsey, Ph.D.

JoSS is pleased to welcome a new Associate Editor-in-Chief on board, with the acceptance of Dr. E. Glenn Lightsey of a five-year term of office in this position beginning in May 2015. Dr. Lightsey joins us as a Professor at Georgia Institute of Technology (Georgia Tech) in Atlanta, and has provided invaluable assistance as a JoSS Technical Area Editor (TAE), as well as generating a good share of the articles published in our journal, since its inception. We are delighted to have Dr. Lightsey’s continued contributions in this new role!

January 2014

STC and UMBC Launch NanoSat


Working in collaboration with the University of Maryland, Baltimore County (UMBC), Science and Technology Corporation (STC) sponsored the development of a 5 cm x 5 cm x 12.7 cm nanosat, “Qubscout-S1”, which was successfully launched to a 616 km orbit on November 21, 2013.


STC fabricated the nanosat frame, while UMBC’s Physics Department students and faculty (under Prof. J. Vanderlei Martins) developed the satellite’s sun sensor for attitude control. Qubscout-S1 was launched into sun-synchronous orbit from a Russian Dnepr LV rocket as a part of its Unisat-5 payload, along with a cluster of 28 other small satellites. After a few months of orbit, the satellite will unfold to increase drag and change its rotation rate. Data from the satellite are downlinked to radio receivers at UMBC, where students will analyze the data from the sun sensors to check their performance.


For inquiries:


STC Contact: Mark Schoeberl – ph 240-481-7390 (


UMBC Contact: Nicole Ruediger – ph 410-455-5791